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How to compute gcd(x,y)
 Observation: gcd(x,y) = gcd(x-y, y) = gcd(x-2y, y) = ….
 Suppose x>y, x=ky+d where d<y, thus 

gcd(x,y)=gcd(ky+d, y)=gcd(ky+d-ky, y)=gcd(d,y)
 Euclid’s Algorithm:

integer euclid(pos. integer m, pos. integer n)
x = m, y = n
while(y > 0)

r = x mod y
x = y
y = r

return x
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How to compute gcd(x,y)
 Euclid’s Algorithm:

r-2x, r-1y , u-21, v-20, u-10, v-11
//Note that this makes  rn=unx+vny for n=-2 and n=-1
n0
while rn-1≠0 do

rnrn-2 mod rn-1, qn rn-2 / rn-1 , 
// rn-2= qnrn-1 + rn; so, un-2x+vn-2y= qn(un-1x+vn-1y)+ rn; 
// So, (un-2-qnun-1)x+(vn-2-qnvn-1)y= rn

unun-2-qnun-1, vnvn-2-qnvn-1, 
n  n+1

end
return gcd(a, b)= rn-2
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Euclid’s Algorithm Example
 Compute gcd(408, 595)

595/408 = 1 remainder 187
408/187 = 2 remainder 34
187/34   = 5 remainder 17
34/17     = 2 remainder 0

Hence gcd(408, 595)= r3=17=-16×408+11×595

n qn rn un vn

-2 408 1 0
-1 595 0 1
0 0 408 1 0

4 2 0 35 -24
3 5 17 -16 11

2 2 34 3 -2

1 1 187 -1 1
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Finding Multiplicative Inverses
 Compute the multiplicative inverse a-1 mod n
 It is equivalent to find a number u such that ua = 1 mod n
 In other words, there is an integer v such that ua + vn = 1 
 Using Euclid’s algorithm, we can compute gcd(a, n) to find u

and v such that ua + vn = 1 
 Fact: a and n are relatively prime iff there are integers u and v

such that ua + vn=1.
Proof: If gcd(a,n)=1, then we can find u and v such that ua + vn = 1 according to 
Euclid’s algorithm. If gcd(a, n)=m>1, suppose a=km, n=k’m, then for any integers u
and v, ua+vn = ukm+vk’m=(uk+vk’)m≠1. 
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Group
 A group, denoted by (G, ◦), is a set G with a binary 

operation ◦: G×GG such that
─ Associativity: a ◦ (b ◦ c) = (a ◦ b) ◦ c (associative)
─ Existence of identity: there exists e ∈ G s.t. ∀x ∈ G, e ◦ x = x

◦ e = x (identity)
─ Existence of inverse: for any x ∈ G, there exists y ∈ G s.t. x ◦

y = y ◦ x = e (inverse)
 A group (G, ◦) is commutative if ∀x, y ∈ G, x ◦ y = y ◦

x.
 Examples: (Z, +), (Q, +), (Q\{0}, ×), (R, +), (R\{0}, 
×)
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Integers modulo n (1/2)
 Let n ≥ 2 be an integer
 Definition: 

a is congruent to b modulo n, denoted as a ≡ b mod n,   
if n|(a-b), i.e., a and b have the same remainder when 
divided by n

 Definition: 
[a]n = {all integers congruent to a modulo n}

 [a]n is called a residue class modulo n, and a is a 
representative of that class.
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Integers modulo n (2/2)
 [a]n = [b]n if and only if a ≡ b mod n
 There are exactly n residue classes modulo n:

[0], [1], [2], …, [n-1]. 
 If x ∈[a] and y ∈[b], then x+y ∈[a+b] and x·y ∈[a·b]. 
 Addition and multiplication for residue classes:

[a]+[b] = [a+b]
[a]·[b] = [a·b]
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Zn (1/2)
 Define Zn={[0], [1], [2], …, [n-1]}.
 Or, more conveniently, Zn={0, 1, 2, …, n-1}.
 (Zn,+) forms a commutative additive group

─ Associavitivity: for ∀a, b, c ∈ Zn, [a]+([b]+[c]) = 
[a]+[b+c]=[a+b+c]=[a+b]+[c]=([a]+[b])+[c]

─ Existence of identity: 0 is the identity element.
─ Existence of inverse: the inverse of a, denoted by –a, is n-a.
─ Communitivity: for ∀a, b∈ Zn, [a]+[b] = [b]+[a]

 When doing addition/subtraction in Zn, just do the 
regular addition/subtraction and then compute the 
result modulo n.
─ In Z10, 5+9=4 
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Zn (2/2)
 (Zn, ×) is not a group, because 0-1 does not exist.
 Even if we exclude 0 and consider only Zn

+ = Zn\{0}, 
(Zn

+, ×) is not necessarily a group; some a-1 may not 
exist.

 For a ∈Zn, a-1 exists if and only if gcd(a, n)=1
 gcd(a, n) = 1 ⇔ there exists integers x and y s.t. 

ax + ny = 1
⇔ [a][x] + [n][y] = [1] in Zn

⇔ [a][x] = [1] in Zn

⇔ [a]-1 = [x] in Zn
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Zn* (1/2)
 Let Zn* = {a ∈ Zn: gcd(a, n) = 1}.
 Theorem: Zn* is closed under multiplication mod n

Proof:
This means if a and b are in Zn*, then ab mod n is in Zn*
Since a and b are relatively prime to n, there are integers 
ua, va, ub, and vb such that 

uaa + van = 1   and     ubb + vbn = 1
Multiply these two equations

(uaub)ab+(uavba+vaubb+vavbn)n = 1
Hence ab mod n is in Zn*
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Zn* (2/2)
 (Zn*, ×) is a commutative multiplicative group.

─ Associativity: for ∀a, b, c ∈ Zn*, (a×b)×c = abc mod n=a×(b×c).
─ Existence of identity: 1 is the identity element.
─ Existence of inverse: the inverse of a, denoted as a-1, can be computed by 

the Euclid’s algorithm.
─ Commutativity: for ∀a, b∈ Zn*, a×b = ab mod n=b×a.

 For example, Z12*={1, 5, 7, 11}. 5×7 = 35 mod 12 = 11
How many elements are there in Zn*?

 Euler’s totient function: 
φ(n) = |Zn*| = | {a ∈ Zn: gcd(a, n) = 1}|

 Facts:
─ φ(p) = (p-1) for prime p.
─ φ(pq) = φ(p)φ(q) if gcd(p, q)=1
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Euler’s Theorem
 Theorem: For all a in Zn*, aφ(n) = 1 mod n

Proof: Let Zn* ={x1, x2, …, xk} and y = x1∙x2…xk mod n
Since Zn* is closed under multiplication,

y is in Zn* and it has an inverse y-1

Multiply each element of Zn* by a
Z={ax1 mod n, ax2 mod n, …, axk mod n} 

How to prove Z=Zn*?
Hint: Prove axi mod n ≠ axj mod n (1≤ i ≠ j ≤ k)

Since Z=Zn*, 
ax1∙ax2…axk mod n = x1∙x2…xk mod n = y

Also ax1∙ax2…axk mod n = aφ(n)x1∙x2…xk =aφ(n)y, Thus
aφ(n)y = y mod n 

Since y has an inverse y-1, we have  aφ(n) = 1 mod n 

 Fermat’s theorem:  If p is a prime and 0<a<p, ap-1 = 1 mod n
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Chinese Remainder Theorem (1/6)
 One of the most useful results in number theory

─ Discovered by Chinese mathematician Sun-Tzu in 400~500 A.D.
─ Problem: we have a number of things, but we do not know exactly how 

many. If we count them by threes we have two left over. If we count them 
by fives we have three left over. If we count them by sevens we have two 
left over. How many things are there?
Formally: if x ≡ 2 mod 3, x ≡ 3 mod 5, x ≡ 2 mod 7, x =?

 It is used to speed up modulo computations 
 If working modulo a product of numbers 

─ eg. mod M = m1m2..mk
 Chinese Remainder Theorem lets us work in each moduli mi 

separately when they are pair wise relatively prime 
 Since computational cost is proportional to size, this is faster 

than working in the full modulus M
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Chinese Remainder Theorem (2/6)
 To compute A(mod M)where M=m1m2...mk

─ 1. compute all  ai = A mod mi separately

─ 2. determine constants ci below, where Mi = M/mi

─ 3. then combine results to get answer using:
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Chinese Remainder Theorem (3/6)
 Let M=m1m2…mk, where the mi are pairwise 

relatively prime, i.e., gcd(mi, mj) =1 (1 ≤ i ≠ j ≤ 
k), we can represent any integer A in ZM by a k-
tuple whose elements are in Zmi using the 
following correspondence:

A ↔ (a1, a2, …, ak )
where A∈ZM, ai∈Zmi, and ai=A mod mi (1≤i≤ k)
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Chinese Remainder Theorem (4/6)
 Assertion 1: A ↔ (a1, a2, …, ak ) is an one-to-one mapping, 

called a bijection, between ZM and Zm1×Zm2×… ×Zmk.
 Proof:

(1) A→ (a1, a2, …, ak ) is obviously unique, i.e., each is ai uniquely calculated 
as ai=A mod mi

(2) (a1, a2, …, ak )→A can be done as follows. 
Let Mi=M/mi (1≤i≤ k). Note: Mi=m1×m2×…×mi-1×mi+1×…×mk

Thus, Mi ≡ 0 (mod mj) for all j ≠ i.
Let ci = Mi×(Mi

-1 mod mi) (1≤i≤ k)
Because Mi is relatively prime to mi, it has a unique multiplicative inverse 
mod mi. Thus ci  is unique.

We compute:

To show the above equation is correct, we must show A=ai mod mi (1≤i≤ k).
This is true because cj ≡ Mj ≡ 0 (mod mi) for all j ≠ i and ci ≡ 1 (mod mi) 
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Chinese Remainder Theorem (5/6)
 Assertion 2:

Operations in ZM can be performed individually in each Zmi.

If               A ↔ (a1, a2, …, ak )
B ↔ (b1, b2, …, bk ) 

Then 
A±B mod M ↔ (a1±b1 mod m1, …, ak±bk mod mk)
A×B mod M ↔ (a1×b1 mod m1, …, ak×bk mod mk)
A÷B mod M ↔ (a1÷b1 mod m1, …, ak÷bk mod mk)
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Chinese Remainder Theorem (6/6)
x = 1 mod 3
x = 6 mod 7
x = 8 mod 10

By the Chinese remainder theorem, the solution is 
M= m1m2m3=3×7×10=210
M1= M/m1=210/3=70, M2= M/m2=210/7=30, 
M3= M/m3=210/10=21 
x = 1×70×(70-1 mod 3)+6×30×(30-1 mod 7)+8×21×(21-1 mod 
10)
= 1×70×(1-1 mod 3)+6×30×(2-1 mod 7)+8×21×(1-1 mod 10)
= 1×70×1+6×30×4+8×21×1 mod 210
= 958 mod 210
= 118 mod 210
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