
Modular Verification of Linearizability with Non-Fixed Linearization Points

Hongjin Liang and Xinyu Feng

Univ. of Science and Technology of China

Linearizability

• Standard correctness criterion for concurrent objects O

• O lin S: All concurrent executions of O are “equivalent”
 to some sequential executions of abstract object S

Challenges in Verification

• Helping mechanism

• LP is in other threads’ code

• Lose thread-modularity ?

• Future-dependent (FD) LPs

• LP is at prior access, but only if later validation succeeds

• Refer to unpredictable future behaviors ?

Pending Thread Pool for Helping

http://kyhcs.ustcsz.edu.cn/relconcur/lin

PLDI 2013, Jun 19, 3:15-4:30pm, Session A

How to specify and prove the correctness of concurrent objects (libraries)?

Concurrent exec. of O: push(7), push(6), ret, ret, pop(), ret(7)

Thread 1:

Thread 2:

ret push(7)

ret push(6)

ret (7) pop()

time

push(6), ret, push(7), ret, pop(), ret(7)

Sequential exec.
of S

Linearization
point (LP)

Our Contributions

• A program logic for linearizability

• Support non-fixed LPs

• A light instrumentation mechanism to help verification

• Try-commit clause as an alternative to prophecy variables

• Logic ensures contextual refinement linearizability

• A new forward-backward simulation as meta-theory

• Verified 12 well-known algorithms

• Some are used in java.util.concurrent (JUC)

Linself for Fixed LPs

1 local b:=false, x, t;

2 x := new Node(v);

3 while (!b) {

4 t := Top;

5 x.next := t;

6 < b := cas(&Top, t, x);

6’ if (b) linself; >

7 }

push(int v):

- { list(Top, Stk) (cid PUSH(v)) }

- { list(Top, Stk) (cid) }

Treiber Stack:
 push(v) lin PUSH(v) ?

PUSH(v): <Stk := v::Stk>;

Stk = v1 :: v2 :: … :: vk

…
v1 next vk next

Top

Auxiliary state

Stk = v :: v1 :: v2 :: … :: vk

Auxiliary state

lines 6 & 6’

…
v1 next vk next

Top
v next

 push(int v):

 1 local p, q, him, b;

 2 p := new ThrdDesc(PUSH, v);

 3 while (!b) {

 4 …

 5 him := rand(); q := L[him];

 6 if (q != null && q.op = POP) {

 7 …

 8 < b := cas(&L[him], q, p);

 8’ if (b) {lin(cid); lin(him);} >

 9 }

10 …

11 }

…
v1 next vk next

Top

(A push and a pop cancel out each other)

Elimination Array L

him PUSH, v

him:
pop()

cid:
push(v)

HSY Elimination-Backoff Stack

line 8

Elimination Array L

him POP

him:
pop()

cid:
push(v)

cas

Auxiliary State: Pending Thread Pool

• U = {him POP, …}

• lin(t) executes & updates U(t)

• U’ = {him , …}

• Abstraction of elimination array L

• Still thread-modular!

Try-Commit for Future-Dependent LPs

readPair(int i, j):

2 local s:=false, a, b, v, w;

3 while (!s) {

4 <a := m[i].d; v := m[i].v;>

5 <b := m[j].d; w := m[j].v; trylinself; >

6 <if (v = m[i].v) { s:= true; commit(cid); } >

7 }

8 return (a, b);

d
v

m 0 1 … k

Pair Snapshot

write(int i, d):

1 <m[i].d := d; m[i].v++;

1’ linself; >

• Speculate (trylin) at potential LP, keep both result and original
abstract code & abstract states speculation set

• Commit to correct branch at later validation and discard others

1. Non-Fixed LPs

2. No program logic with soundness w.r.t. linearizability

• C : instrument O with auxiliary commands (ACs) at LPs

• ACs manipulate auxiliary states (S and abstract states)

• Execute S simultaneously with O’s LP step

• Reason about C using our program logic

• Extend an existing logic (e.g. Rely-Guarantee) with inference rules for ACs

• Ensure O’s LP is the single step with the same effect as S

Our Approach to Verifying O lin S

Line 5 is LP only if line 6 succeeds

Objects Helping FD LPs
Java Pkg

(JUC)
Herlihy-Shavit

Book

Treiber stack

HSY stack

MS two-lock queue

MS lock-free queue

DGLM queue

Lock-coupling list

Optimistic list

Heller et al lazy list

HM lock-free list

Pair snapshot

CCAS

RDCSS

Verified Algorithms Using Our Logic

