循环群与群同构

回顾

- □问题1:什么叫做群的子群,如何判别之?
 - □非空子集+封闭、结合律、单位元、逆元
 - □判定:根据定义或三个判定定理
- □问题2: 子群一定存在么, 若存在则满足什么 性质?
 - □一定存在平凡子群
 - □子群H的所有陪集构成母群G的一个划分
 - ■拉格朗日定理及其推论:有限群的子群阶是母群阶的因子、有限质数阶群没有非平凡子群、有限质数阶群一定是循环群

本节提要

- □问题1:什么是循环群?
- □问题2:循环群的子群是否存在、如何构造?
- □问题3:循环群是否存在统一的规律性?

循环群与生成元

● 定义(循环群):

设 $\langle G,*\rangle$ 为循环群(cyclic group)指:

$$(\exists a \in G)(G = \langle a \rangle)$$

这里, $\langle a \rangle = \{a^n | n \in \mathbb{Z}\}$, a称为G之生成元

(generator)

循环群与生成元 (续)

- 章 定义(有限循环群): 若循环群G的生成元a的阶为n,则称G为有限循环群,即n阶循环群: $G = \{a^0, a^1, a^2, \cdots, a^{n-1}\}$,其中 a^0 为幺
- 定义(无限循环群): 若循环群G的生成元a为无限阶元,则称G为无限循环群: $G = \{a^0, a^{\pm 1}, a^{\pm 2}, \cdots\}$,其中 a^0 为幺

● 例1: 无限循环群(ℤ,+)

 $\langle \mathbb{Z}, + \rangle$ 是循环群,恰有2个生成元: 1和 -1

:: n为 \mathbb{Z} 之生成元 $\Leftrightarrow \mathbb{Z} = \langle n \rangle \Leftrightarrow (\exists k \in \mathbb{Z}) n^k =$

 $1 \Leftrightarrow (\exists k \in \mathbb{Z})(k \cdot n = 1) \Leftrightarrow n \in \{1, -1\}$

:: 1和 - 1均是其生成元

፟ 例2: 有限循环群

模6剩余加群 $(\mathbb{Z}_6, \bigoplus_6)$ 是循环群,恰有2个生成

元:1和5

$$5^0 = 0$$
, $5^1 = 5$, $5^2 = 4$,

$$5^3 = 3$$
, $5^4 = 2$, $5^5 = 1$.

● 例3: 非循环群

Klein四元群(V,*)不是循环群,因为对任何

$$x \in V$$
, $\langle x \rangle = \{e, x\}$:

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

无限循环群的生成元

■ 命题: 若a是无限循环群的生成元,则 a^{-1} 也是该无限循环群的生成元

》 设群 $G = \langle a \rangle = \{a^k | a \in G, k \in \mathbb{Z}\}, a^k =$ $(a^{-1})^{-k}, \Leftrightarrow p = -k, \quad \text{则} G = \{(a^{-1})^p | p \in \mathbb{Z}\}$ $, \quad \&G = \langle a^{-1} \rangle$

无限循环群的生成元 (续)

- → 命题: 无限循环群有且只有2个生成元

有限循环群的生成元

- 命题:设有限群 $G = \langle a \rangle$,且|a| = n,则对任意不大于n的正整数r, $G = \langle a^r \rangle \Leftrightarrow \gcd(n,r) = 1$
 - "←": 设gcd(n,r) = 1, 则(∃u,v∈ℤ)(ur + vn = 1), 因此a = a^{ur+vn} = (a^r)^u(aⁿ)^v = (a^r)^u。故而G 中任意元素a^k可表为(a^r)^{uk},故有G = ⟨a^r⟩;
 - "⇒":设 a^r 是G的生成元,令gcd(n,r) = d且r = dt,则 $(a^n)^t = (a^n)^{r/d} = (a^r)^{n/d} = e$,故 $|a^r||(n/d)$,但 $|a^r| = n$ 故 $n|\frac{n}{d} \Rightarrow d = 1$,故有 gcd(n,r) = 1即n与r 互质。

有限循环群的生成元 (续)

● n阶循环群G的生成元的个数恰好等于不大于

n且与n互质的正整数的个数,即Euler函数

 $\varphi(n)$, 其生成元集为:

 $\{i | 0 < i \le n \land \gcd(i, n) = 1\}$

例

- 例 (1) 设 $G=\{e,a,...,a^{11}\}$ 是 12 阶循环群,则 $\varphi(12)=4$. 小于或等于 12 且与 12 互素的数是 1, 5, 7, 11, 由定理 11.19 可知 a, a^5 , a^7 和 a^{11} 是 G 的生成元.
 - (2) 设 $G=\langle Z_9, \oplus \rangle$ 是模 9 的整数加群,则 ϕ (9)=6. 小于或等于 9 且与 9 互素的数是 1, 2, 4, 5, 7, 8. 根据定理 11.19, *G* 的生成元是 1, 2, 4, 5, 7 和 8.
 - (3) 设 $G=3Z=\{3z \mid z \in Z\}$, G 上的运算是普通加法. 那么 G 只有两个生成元: 3 和-3.

本节提要

- □问题1: 什么是循环群?
 - □可通过某个元素(生成元)生成所有元素
 - □无限循环群有两个生成元,有限循环群有Φ(n) 个生成元
- □问题2: 循环群的子群是否存在、如何构造?
- □问题3:循环群是否存在统一的规律性?

循环群的子群

- 命题: 设 $G = \langle a \rangle$ 为循环群
- (1) G的子群为循环群
- (2) 若 $|a| = \infty$,则G的子群除 $\{e\}$ 外皆为无限循环群

证:

(1) 令 $(H, *) \leq (G, *)$,从而 $H \subseteq \langle a \rangle$,若 $H = \{e\}$ 自然成立 否则取 a^m 为H中最小正方幂元.下证 $H = \langle a^m \rangle$ 只需证 $H \subseteq \langle a^m \rangle$,任取 $h \in H \subseteq \langle a \rangle$,故 $h = a^n$ 。

令n = qm + r, $0 \le r < m$,从而 $h = a^n = a^{qm+r} = (a^m)^q a^r$,从而 $a^r = h(a^m)^{-q} \in H$,故由m的最小性得r = 0,从而 $h = (a^m)^q \in \langle a^m \rangle$,因此H为循环群。

(2) 设 $H \leq G$,由(1)得 $H = \langle a^m \rangle$,若 $H \neq \{e\}$ 则 $m \neq 0$,从而若|H|有穷则 $|a^m|$ 有穷与|a|无穷矛盾。

循环群的子群(续)

- 证明:
 - $\diamond H = \langle a^{n/d} \rangle$, 显然 $H \neq G$ 的d阶子群
 - 若令 $H_1 = \langle a^m \rangle$ 亦为d阶子群,则 $(a^m)^d = a^{md} = e$,故有n|md,即 $\frac{n}{d}|m$,因此 $a^m = \left(a^{n/d}\right)^k \in H$,即 $H_1 \subseteq H$,但 $H_1 \approx H$,故有 $H_1 = H$

 $G=Z_{12}$ 是 12 阶循环群. 12 的正因子是 1,2,3,4,6 和 12,因此 G的子群是:

本节提要

- □问题1: 什么是循环群?
 - □看通过某个元素(生成元)生成所有元素
 - □无限循环群有两个生成元,有限循环群有Φ(n) 个生成元
- □问题2:循环群的子群是否存在、如何构造?
 - □对于n阶循环以及n的因子d,恰有一个d阶子群,为<an/d>
- □问题3:循环群是否存在统一的规律性?

群同构与同构映射

● 定义(群 同 构): 群 $\langle G_1, \circ \rangle$ 与 $\langle G_2, * \rangle$ 同构 $(G_1 \cong G_2)$ 当 且仅当存在双射函数 $f: G_1 \to G_2$,满足: $\forall x, y \in G_1$, $f(x \circ y) = f(x) * f(y)$

• 例:

正实数乘群 $\langle \mathbb{R}^+, \cdot \rangle$ 和实数加群 $\langle \mathbb{R}, + \rangle$,同构映射 $f: \mathbb{R}^+ \to \mathbb{R}: f(x) = \ln x$

群同态与同态映射

量定义(群同态): $\#\langle G_1, \circ \rangle = \langle G_2, * \rangle$ 同态($G_1 \sim G_2 \rangle$) 当且仅当存在函数 $f: G_1 \rightarrow G_2$, 满足:

$$\forall x, y \in G_1, \ f(x \circ y) = f(x) * f(y)$$

• 如果上述映射是满射,则称为满同态;如映射是单射,则称为单同态;若 $G_1 = G_2$,则称 φ 为自同态

群同态与同态映射 (续)

• 命题:设f为从群 $\langle G,*\rangle$ 到群 $\langle H,\circ\rangle$ 的同态,则

(1)
$$f(e_G) = e_H$$
;

(2)
$$f(a^{-1}) = (f(a))^{-1}, \forall a \in G$$

近明: (1)
$$:: f(e_G) = f(e_G e_G) = f(e_G) f(e_G)$$

 $:: f(e_G) = f(e_G) (f(e_G))^{-1} = e_H$
(2) $:: f(a^{-1}) f(a) = f(a^{-1}a) = f(e_G) = e_H$
 $f(a) f(a^{-1}) = f(aa^{-1}) = f(e_G) = e_H$
 $:: f(a^{-1}) = (f(a))^{-1}$

无限循环群的同构群

- □ 定理: 设 $\langle G,*\rangle$ 为无限循环群,则 $\langle G,*\rangle\cong\langle\mathbb{Z},+\rangle$
- 证明: $|a| = \infty$, $\diamondsuit f: \mathbb{Z} \to G$ 如下: $f(n) = a^n$,

$$\therefore f(n+m) = a^{n+m} = a^n * a^m = f(n) * f(m) :: f \not\supset$$

同态; 又:
$$f(n) = f(m) \Rightarrow a^n = a^m \Rightarrow a^{|n-m|} =$$

$$e \Rightarrow |n-m| = 0 \Rightarrow n = m : f 为 1-1$$
, onto 易见,从

而
$$\langle G, * \rangle \cong \langle \mathbb{Z}, + \rangle$$

有限循环群的同构群

- **□ 定理**: 设〈G,*〉为有限循环群,则〈G,*〉≅〈 \mathbb{Z}_n,\bigoplus_n 〉
- 证明: |a| = n > 0从而 $G = \{a^0, a^1, \dots, a^{n-1}\}, \$ 令 $f: \mathbb{Z}_n \to G$ 如下: $f(i) = a^i (i = 0,1,\dots,n-1)$, 由 $\mathcal{F}f(i \bigoplus_n j) = a^{i \bigoplus_n j} = a^i * a^j = f(i) * f(j),$ 故 f 为同态。又由于 $f(i) = f(j) \Rightarrow a^i = a^j \Rightarrow a^{|i-j|} =$ $e \Rightarrow n||i-j| \Rightarrow i \equiv j \pmod{n} \Rightarrow i = j$, 故f 为单射 f的满射性易见,因此 $\langle G,*\rangle \cong \langle \mathbb{Z}_n, \bigoplus_n \rangle$

循环群的同构群

● 定理: 设 $\langle G,*\rangle$ 为无限循环群,则 $\langle G,*\rangle\cong\langle\mathbb{Z},+\rangle$

• 定理: $\mathcal{C}(G,*)$ 为有限循环群, $\mathcal{C}(G,*) \cong (\mathbb{Z}_n, \oplus_n)$

推论:循环群皆为阿贝尔群

本节小结

- □问题1: 什么是循环群?
 - □通过某个元素(生成元)生成所有元素
 - □无限循环群有两个生成元,有限循环群有Φ(n)个 生成元
- □问题2:循环群的子群是否存在、如何构造?
 - □对于n阶循环以及n的因子d,恰有一个d阶子群, 为<an/d>
- □问题3:循环群是否存在统一的规律性?
 - ■无限循环群皆与整数加群同构,n阶有限群循环 群皆与模n加法群同构

例: 群的直积

□ 给定两个群: (S, ∘), (T,*), 定义笛卡儿乘积S×T上的运算⊗如下:

$$\langle s_1, t_1 \rangle \otimes \langle s_2, t_2 \rangle = \langle s_1 \circ s_2, t_1 * t_2 \rangle$$

- □ 证明: (S×T, ⊗)是群
 - □ 结合律: $<(s_1 \circ s_2) \circ s_3, (t_1 * t_2) * t_3 >$ = $< s_1 \circ (s_2 \circ s_3), t_1 * (t_2 * t_3) >$
 - □ 单位元素: <1_S, 1_T>
 - □ 逆元素: <s, t> 的逆元素是 <s⁻¹, t⁻¹>
 - ■(其中: $s, s^{-1} \in S, t, t^{-1} \in T$)

例:循环群的直积

- □ C_m×C_n≅C_{mn} iff m与n互质。 其中C_k表示k阶循环群。
 - □ ←若m与n互质,只需证明C_m×C_n含有阶为mn的元素。
 - $(a,b)^{mn}$ = e, 其中a,b分别是 C_m 和 C_n 的生成元素。
 - $\dot{a}(a,b)^k = e, k$ 必是m,n的公倍数,因m与n互质,故k是mn的倍数。所以,(a,b)的阶是mn。
 - □ ⇒ ${}^*C_m \times C_n \cong C_{mn}$,则 $C_m \times C_n$ 是循环群,设其生成元是(s,t),则(s,t)的阶是mn, 若gcd(m,n)=k>1,则(s,t) $^{mn/k}=e$,这与(s,t)的阶是mn矛盾。

注意: $s^m = e_1$, $t^n = e_2$,

欧拉函数和欧拉定理

□ C_n 中元素按其阶分类,d阶元素共有 $\varphi(d)$ 个,d|n.

$$\sum_{d|n} \varphi(d) = n,$$

- □n的每个因子d,恰有一个d阶子群
- □d阶子群生成元个数是φ(d),每个生成元都是d阶元素

例

 $G=Z_{12}$ 是 12 阶循环群. 12 的正因子是 1,2,3,4,6 和 12,因此 G的子群是:

欧拉函数和欧拉定理

• (Euler定理) 若正整数a与n互质,则

$$a^{\varphi(n)} \equiv 1 \mod n$$
.

小于n且与n互质的正整数及(模n)乘法构成一个群

例如,n=12,群元素 $\{1,5,7,11\}$,该群的单位元是1。 假设某个满足条件(a,n)=1的元素a的阶是k,即 $a^k\equiv 1$ $(mod\ n)$;<a>是一个子群,由拉格朗日定理有 $<math>\phi(n)=k*M$,于是有 $a^{\phi}(n)=a^{kM}=1$ =1 =1 =1

作业

□见课程主页