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Abstract

Andersen’s pointer analysis becomes more precise when ap-
plied with full heap cloning but unscalable for large, heap-
intensive programs. In contrast, k-callsite-sensitive heap
cloning can be faster but less precise for some programs.

In this paper, we make one step forward by enhanc-
ing Andersen’s analysis with QUery-Directed Adaptive
(QUDA) heap cloning for optimizing compilers. The nov-
elty of our analysis, called QUDA, lies in performing
k-callsite-sensitive heap cloning iteratively, starting with
k = 0 (without heap cloning), so that an abstract heap
object is cloned at iteration £ = ¢ 4+ 1 only if some may-
alias queries that are not answered positively at iteration
k = ¢ may now be answered more precisely. QUDA, which
is implemented in Open64, has the same precision as the
state-of-the-art, FULCRA, a version of QUDA with exhaus-
tive heap cloning, but is significantly more scalable. For 10
SPEC2000 C benchmarks and 5 C applications (totalling
840 KLOC) evaluated, QUDA takes only 4+ minutes but
exhaustive heap cloning takes 424+ minutes to complete.
QUDA takes only 75.1% of the time that Open64 takes on
average to compile these 15 programs under “-02”.

Categories and Subject Descriptors D.3.4 [Processors]:
Compilers; F.3.2 [Semantics of Programming Languages]:
Program Analysis

General Terms  Algorithms, Languages, Performance

Keywords Pointer analysis, heap cloning

1. Introduction

Pointer analysis is critical in driving optimizations in op-
timizing compilers. To sharpen its precision, heap cloning
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Figure 1. Percentage of must-not aliases disambiguated
for hmmer (gene sequence search) among the machine-
independent queries issued by WOPT (in Open64’s back-
end) with k-callsite-sensitive heap cloning.

aims to statically distinguish objects dynamically created at
different calling contexts to an allocation site. We speak of
k-callsite-sensitive heap cloning if a context is identified by
the last k callsites in an acyclic call path (with each recur-
sion cycle being collapsed). There are two important special
cases: full heap cloning (by acyclic call paths) when k is
sufficiently large and allocation-site-based heap abstraction
without heap cloning when k& = 0. In the latter case, one ab-
stract heap object is created per allocation site. In the former
case, a heap object returned from a callee is cloned distinctly
at its distinct callsites. As k increases, pointer analysis be-
comes strictly no less precise but more costly to compute.
With full heap cloning, the precision for some programs
can be significantly improved but the analysis can be pro-
hibitively expensive or even does not terminate [22, 23].
Steensgarrd’s unification-based and Andersen’s inclusion-
based pointer analyses are commonly used in modern com-
pilers. Earlier [16], Steensgarrd’s analysis with full heap
cloning is made scalable for C programs. As Andersen’s
analysis is significantly more precise but also significantly
more costly to compute than Steensgarrd’s, we have not
seen the same success for Andersen’s analysis with full heap
cloning. In this paper, we make one step forward in solving
this challenging problem. There are two motivations under-



pinning this work. First, Andersen’s analysis is the most pre-
cise of all pointer analyses that are flow-insensitive (by not
considering flow of control) and context-insensitive (by not
distinguishing calling contexts for a callee). Due to recent
advances, Andersen’s analysis is now scalable for large pro-
grams [10, 25]. In the latest release (5.0) of the Open64 com-
piler, its pointer analysis is no longer unification-based but
rather inclusion-based. Second, given the same heap cloning
policy, Andersen’s analysis can be more precise than Steens-
garrd’s in answering the alias queries issued by the compiler,
as illustrated in Figure 1, for an application evaluated later
in Section 5.

There are some earlier efforts on integrating heap cloning
with Andersen’s analysis. Full heap cloning for C is unscal-
able for large, heap-intensive programs [22] as the number
of abstract heap objects cloned can be prohibitive in terms
of both time and space. The demand-driven analysis formu-
lated via context-free-language reachability [21, 27-29, 38]
embraces naturally full heap cloning, but its scalability when
deployed as a whole-program pointer analysis remains to
be further investigated [36]. BDD-based techniques, while
effective for solving context-sensitive pointer analyses [33,
39], may not scale for full heap cloning [18, 35, 36].

Among various heap cloning solutions, full heap cloning
is the most precise but doing so blindly across all acyclic
call paths can lead to uncontrollable overhead [22] with lit-
tle benefit to support compiler optimizations [15, 17]. On
the other hand, k-callsite-sensitive heap cloning for a small,
fixed k is also problematic as shown in Figure 10(a). The
best value for k precision-wise varies from program to pro-
gram. For example, k£ should be 2 for sendmail but 4 for
vortex. As a result, fixing £ = 2 for both is not precise for
vortex but using k = 4 instead is unnecessarily over-costly
for sendmail. Although it is tempting to tune a program
manually by trying different values of k to tradeoff precision
and scalability [22, 35, 36], this is not systematic and can be
as costly as full heap cloning since the program has to be
reanalyzed with the prior results dropped and recomputed.

1.1 Our Solution

We show how to achieve the same precision of full heap
cloning on top of Andersen’s analysis efficiently for an op-
timizing compiler without actually performing full heap
cloning. We achieve this by focusing our heap cloning ef-
forts on improving the precision required for answering the
pointer-related queries issued by the compiler. Our key in-
sight is to enable heap cloning only where it is necessary to
answer more alias queries precisely in an iterative manner.
As shown in Figure 2, we enhance Andersen’s analysis
with QUery-Directed Adaptive (QUDA) heap cloning. The
novelty of the resulting analysis, called QUDA, lies in per-
forming k-callsite-sensitive heap cloning iteratively, starting
with k£ = 0 (without heap cloning), so that an abstract heap
object is cloned at iteration £ = ¢ + 1 only if some alias

Alias Queries (Q)
Heap-Aware v Selecting Candidate Adaptive
Pointer Solver Heap Objects (C) Update

Cloning Level k l
k++

Figure 2. QUDA: Query-directed adaptive heap cloning.

queries that are not answered positively at iteration k = 1
may now be answered more precisely.

Our analysis is heap-aware as each pointed-to target is
guarded. For the subset of queries in Q that are detected to be
may-aliases, the guards for their aliased locations reveal di-
rectly the set C of candidate heap objects to be further cloned
so that these queries may be answered more accurately. The
points-to relations affected by such candidates are removed.
The pointer analysis in the next round is restarted, with each
candidate in C being cloned as needed during the pointer
resolution.

1.2 Contributions

* We propose a novel query-directed adaptive heap cloning
(QUDA) approach that achieves the same precision as
full heap cloning (subject to some stopping condition) for
the same alias queries but is significantly more scalable.

® We present the first heap-aware pointer resolution method
performed on a constraint graph that allows points-to re-
lations to be efficiently removed (rather than just added).

® We have implemented QUDA in the Open64 compiler
and evaluated it using the 10 largest SPEC2000 C bench-
marks and 5 C applications (totalling 840 KLOC). By
comparing QUDA with the state-of-the-art FULCRA [22]
(a version of QUDA with exhaustive heap cloning),
QUDA takes only 4+ minutes but exhaustive heap
cloning takes 424 minutes to complete. Indeed, QUDA
takes only 75.1% of the time that Open64 takes on aver-
age to compile all these 15 programs under “-02”.

2. Background

We first describe the canonical representation used for a
program, then introduce briefly Andersen’s inclusion-based
analysis, and finally, look at context-sensitive heap cloning.

2.1 Program Representation

There are four types of statements: x = &y (address),
z = xy (load), *x = y (store) and z = y (copy). Note
that x = *x* y can be transformed into x = *t and t = %y
by introducing a new temporary variable t¢. Different fields
of a struct are distinguished. However, arrays are considered
monolithic. Every call contained in a procedure has the form
foo(r,as,...,ay,), where the return variable r and the ac-
tual parameter a1, . . ., a,, are local variables in foo.
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Figure 3. Pointer resolution in a constraint graph.

1: int main(){ 1: int main(){

2: int *m,*n; 2: int**p,**q,*m,*n;
3: m = bar(); //o2 3: p = &m; q = &n;

4: n = bar(); //o3 4:  bar(p); //o2

5: %} 5: bar(q); //03

6: int* bar(){ 6: }

7: int* t = malloc(4);//ol 7: void bar(intx* x){
8: return t; 8: *x = malloc(4);//ol
9: } 9: }

(a) Explicit cloning (b) Indirect cloning

Figure 4. Two kinds of heap cloning. In either case, m and
n point to o/ without heap cloning and m points to 02 and n
points to o3 with 1-callsite-sensitive heap cloning.

2.2 Constraint-based Andersen’s Analysis

As illustrated in Figure 3, Andersen’s analysis discovers
points-to information by treating assignments as subset con-
straints using a constraint graph until a fixed point is reached.
For the code in Figure 3(a), Andersen’s analysis starts with
the constraint graph given in Figure 3(b). For the address
statements, p=&o and y=&z, the points-to information is di-
rectly recorded for their left-hand side variables. Then the
analysis resolves loads/stores by adding new copy state-
ments discovered. As y points to z, the two new copy state-
ments related to z are added as shown in Figure 3(c). The
new points-to information discovered is propagated along
the two edges. Finally, x is found to point to o.

2.3 Context-Sensitive Heap Cloning

Consider the two examples in Figure 4. Without heap
cloning in either case, both m and n point to o/, which pro-
vides an abstraction for all objects created inside bar. So *m
and *n are regarded as aliases. With 1-callsite-sensitive heap
cloning, o/ is cloned into 02 and o3 explicitly in Figure 4(a)
via a return statement or indirectly in Figure 4(b) via a for-
mal parameter. By distinguishing the two calling contexts to
bar in either case, m points to 02 and n points to 03. As a
result, *m and *n are concluded not to alias precisely.

3. A Motivating Example

As shown in Figure 5(a), there is one allocation site in
getMem and one in allocMem. If full heap cloning is en-
abled, explicit heap cloning happens at the callsites cso and
cs3 in readArray when the side-effects of getMem are ap-

plied and indirect heap cloning happens at css and csg in
allocArray when the side-effects of allocMem are applied.
Similarly, one more indirect cloning occurs at csz.

Let us see how QUDA, depicted in Figure 2, works given
the two may-alias queries in Q = {(xm,*n), (*p, *q)} to
be answered. There are two allocation sites in the program:
csy and cs4. Each allocation site is associated with an HCT
(Heap Cloning Tree), which captures the relations among all
the objects created from the site, as will be explained later.

We focus only on how readArray is analyzed. There are
two iterations illustrated in Figures 5(b) and (c):

k = 0 (Figure 5(b)) No heap cloning occurs. In this case,
the same heap object is returned in different calling con-
texts to an allocation site, as indicated by the HCTs. Our
heap-aware pointer analysis proceeds as follows. Con-
sider the leftmost box. Initially, p points to (true,x) un-
conditionally since x is guarded by true. When the side-
effects of getMem are transferred to the callsites cso and
¢s3, m points to (he1,01) and n also points to (he1,01).
In each case, the pointed-to target ol may be spurious if
ol encoded by the guard h,; (indicated by its subscript)
is further cloned. When the store *m = p is resolved, a

copy edge ol }<L—°% p is introduced except that it is guarded
by the same condition in the pointed-to target (h,1,01)
of m. Similarly, when the load 9 = *n is resolved, a copy

edge q Q’g o1 is introduced. Our constraint resolution re-
mains the same as the traditional one illustrated in Fig-
ure 3 except that all copy edges are guarded. The fixed
point found is the one shown in the leftmost box.

We now try to answer the two alias queries issued.
MayAlias(*m, *n) = true. Their aliased location ol is
guarded by h,1, indicating that o1 should be selected as a
candidate for cloning at cs, and cs3 so that this query may
be more accurately answered. MayAlias(*p, *q) = true
since x is their common target. While x is not a heap
object, the guard h, in the pointed-to target (h,1,x) of
q indicates that this points-to relation may be spurious if
ol is further cloned. Therefore, we obtain C = {o1}.

Finally, the constraint graph is updated as shown in the
middle box. Essentially, the points-to relations affected
by ol inm, n, p and q have been removed.

k = 1 (Figure 5(c)) When the side-effects of getMem are
transferred to c¢so and cs3, ol is split into 02 and 03, re-
spectively, as recorded in the HCTs. Thus, m points to
(ho2,02) and n to (h,s,03). This time, we conclude that
MayAlias(*m, *n) = false. Similarly, MayAlias(*p, *q) =
false as q no longer points to x. Since both queries are
answered positively, no more iterations are needed.

Finally, as shown in the HCTS in Figure 5(c), QUDA
clones only where it is necessary to answer the two alias
queries. In contrast, full heap cloning is blind, resulting in
more heap objects cloned unnecessarily with no benefit.



int foo(){
char* x; char®** arr = &x;
cs7:  allocArray(arr); /oy
readArray(arr);
}

void readArray(char **p){
csy:  char®* m = getMem(); /0
csg:  char®* n = getMem(); /o3
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void allocArray(char **arr){ hﬁ
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void allocMem(char** mem){
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}
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Figure 5. A motivating example (illustrating the analysis of readArray in its constraint graph).

4. Query-Directed Adaptive Heap Cloning

We describe our QUDA approach by discussing how to inte-
grate it with an Andersen’s analysis that is context-sensitive
by acyclic call paths for method calls (i.e., their local vari-
ables) but 0-callsite-sensitive for heap cloning. As both com-
ponents are orthogonal, we will focus only on describing the
key phases of QUDA depicted in Figure 2.

Without loss of generality, our analysis is summary-
based. As a result, the analysis interleaves a top-down phase
and bottom-up phase iteratively until a fixed point is reached.
During a top-down phase, the pointer information is propa-
gated from a caller to its callees. During a bottom-up phase,
the side-effects of a callee are summarized and promoted to
its callsites for further pointer resolution.

As shown in Figure 2, QUDA is adaptive, guided by
the alias queries issued by the compiler. Therefore, QUDA
starts with an interprocedural context-sensitive heap-aware
pointer analysis without heap cloning (Section 4.1). Then,
the points-to information obtained is used to answer the alias
queries generated by the compiler. The heap objects that
can be further cloned to potentially improve the precision
of some queries are selected as candidates for further heap
cloning (Section 4.2). Finally, the constraint graph of a pro-
gram is updated by removing the points-to relations (and
constraints) affected by the candidate heap objects selected
(Section 4.3).

4.1 Heap-Aware Pointer Analysis

This section presents our heap-aware pointer analysis for
a program. Section 4.1.1 focuses on the intraprocedural
analysis by describing how an individual procedure is an-
alyzed without considering the side-effects of its callsites.
Section 4.1.2 discusses the interprocedural analysis for a
procedure by considering the side-effects of its callsites and
performing context-sensitive heap cloning at its callsites.

4.1.1 Intraprocedural Analysis

There are two tasks involved when analyzing a procedure,
heap-aware pointer resolution and side-effect summariza-
tion. The former discovers the points-to sets of the pointers
in the procedure with annotated heap information. The latter
computes the side-effects of the procedure to be used by its
callers for interprocedural context-sensitive analysis.

Due to flow-insensitivity, global variables are treated
context-insensitively in a separate constraint graph in the
standard manner [16, 20, 22]. Therefore, only the locals and
heap objects are subject to context-sensitive analysis.

Definition 1 (Points-to Sets). For a variable p, PtrSet(p) is
a set of locations possibly pointed to by p.

During pointer resolution, each pointed-to location is
guarded by a Boolean condition, which specifies the set of
all heap objects whose further cloning (if possible) may ren-
der the pointed-to location spurious.



Statements Points-Relations Statements Points-Relations
*y = X; PtrMap(z) = {(true, g)} tl = *v; PtrMap(v) = {(ho3,03)}
Input: y = *w; PtrMap(v) = {(ho1,01 ] = x: PtrMap(03) = {(ho4,04)}
PtrMap(w) = {(ho1,01 PtrMap(z) = {(true, g)}
*m=y; PtrMap(m) = {(hog, 02 2 ="*w; PtrMap(w) = {(ho3,03)}
z = *n; PtrMap(n) = {(ho2, 02 z="*2;
Ouput: | PuMap(z) = {(Fio1 A . 9)) PtrMap(z) = {(1as / fio1. )}

(a) Value-flow via a sequence of objects

(b) Value-flow via a hierarchy of nested objects

Figure 6. Two examples illustrating heap-aware pointer analysis.

Definition 2 (Points-to Maps). The points-to map of a vari-
able p, PtrMap(p), is a set of guarded pointed-to locations
(h,a), where h is a Boolean condition and a € PtrSet(p).

It is understood that each pointed-to location appears only
once in PtrMap(p). If (h,0) and (h’,0) are added to it
together, then both are merged into (h V A/, 0).

p = &o (malloc(...)) ois aheap object

[ADDR-HEAP]

PtrMap(p) U= {(ho,0)}

p=2&q qisalocal/global variable

ADDR-VAR
[ : PtrMap(p) U= { (irue, q)}
pP=q
[COPY-DIR] e
pE—gq
h
p<q (hy,q') € PtrMap(q)

[COPY-PROP]

PtrMap(p) U= {(hy Ah,q')}

p==xq (hy,q) € PtrMap(q)
[LOAD] o
p o q
*p=q (hy,p') € PtrMap(p)
[STORE] o
p e q

Table 1. Rules used for heap-aware pointer resolution.

Heap-Aware Pointer Resolution There are a total of six
rules in Table 1. These rules differ from those used in the
traditional constraint resolution (introduced briefly in Sec-
tion 2.2) only in that all copy edges are now guarded.

There are two rules for address statements in the pro-
gram. If p receives directly what is returned from an allo-
cation site, then the guard h, encodes the proposition that
o is the object returned from the allocation site, establish-
ing the condition under which the points-to relation holds
([ADDR-HEAP]). Otherwise, when what is pointed to is a lo-
cal or global, the points-to relation is unconditional, since it
cannot be changed by heap cloning ([ADDR-VAR]).

For a load statement, a new copy edge guarded by h; is
generated from each pointed-to target ¢’ of ¢ to p ([LOAD]).
We do likewise for a store statement ([STORE]).

There are two rules for copy assignments. For a copy
statement available in the program, [COPY-DIR] applies. For
a copy edge guarded by h (i.e., an indirect assignment cre-
ated from a load/store), each guarded location pointed by ¢
is propagated to p under this extra guard, h ([COPY-PROP]).

Example 1. Letr us consider our example. In Figure 5(b),
PtrMap(p) = {(true, z)} by [ADDR-VAR] and PtrMap(m)=
PtrMap(n) = {(ho1,01)} by first applying [ADDR-HEAP] to
the malloc statement in getMem and then transferring the
side-effects of getMemto csy and css without heap cloning.

ho
When resolving *m = p by [STORE], a copy edge ol <= p
is added. When resolving q = *n by [LOAD], another copy

edge q }<L—°% ol is added. When further resolving the two copy
edges by [COPY-PROP], we obtain PtrMap(q) = {(ho1, z)}.

Similarly, in Figure 5(c), where heap cloning is ap-
plied, after having resolved all the constraints, we find that
{(ho1,2)} ¢ PtrMap(q). Recall that ol created at cs; is
split into 02 and 03 at cse and css, respectively.

Figure 6 illustrates our rules intuitively with two rep-
resentative cases in terms of object containment. In Fig-
ure 6(a), ho1 A hoe specifies the fact that g flows (directly)
into z through a sequence of two objects (or data structures),
ol and 02. In Figure 6(b), h,3 A h,4 specifies the fact that g
flows into z through a hierarchy of nested objects (or compo-
nents) such that g flows into 04, which flows into or is nested
inside 03. So g flows into o3 indirectly.

Definition 3. Given a guarded points-to location (h,a), an
heap object o is encoded by h if h contains h,.

In Figure 6(a), (ho1 A ho1,g) € PtrMap(z). The points-
to relation is conditional on how the two encoded objects 01
and o, are further cloned. In Figure 6(b), (ho3 A hos,g) €
PtrMap(z). The two encoded objects are o3 and 04.

If these two cases are combined, then PtrMap(z) =
{(ho1 A ho2 V hoz A hosa,g)} since our analysis is flow-
insensitive. In general, each pointed-to location is guarded
by a disjunction of conjuncts that encodes the set of heap



objects to be further cloned (if possible) if the points-to
location is to be further disambiguated.

Example 2. Figure 7 shows an example when performing
guarded points-to propagation across copy edges. Eventu-
ally, o is propagated from p’s points-to set into q’s points-to
set guarded by (h1 A ho) V hg. If either hq A ha or hs is true,
then (true, 0) € PtrMap(q). This means that the pointed-to
relation is unconditional, as it cannot be changed by how
different heap objects are cloned in future iterations.

{(true,0)} {((h1Ah2)Vh3,0)}

Figure 7. Guarded propagation of points-to information.

Side-Effect Summarization First, a lightweight escape
analysis is performed for each procedure to determine the
objects that may escape into and out of this procedure. Then
the side effects of each procedure is summarized, including
all its statements that may potentially modify any escaped
object in the standard manner as described in [22]. To deal
with the callsites in the procedure, their side-effects must be
accommodated also, as discussed below.

4.1.2 Interprocedural Analysis

QUDA performs its adaptive heap cloning iteratively across
the call graph of a program, first top down and then bottom
up, as shown in Algorithm 1. The input is C, the set of
heap objects selected in the previous iteration for further
cloning in this iteration. C = ) when & = 0. The call
graph for a program is the one built with context-sensitive
Andersen’s analysis by acyclic call paths for method calls
without heap cloning. All recursion cycles in the call graph
are collapsed into SCCs so that the procedures in an SCC are
analyzed context-insensitively. QUDA resembles FULCRA
[22] except that their heap cloning strategies are different:
the former is adaptive in order to answer alias queries more
accurately while the latter is exhaustive.

Algorithm 1: INTERPROCEDURALANALYSIS(C)

1 repeat
2 Top-down_Analysis
// Bottom-Up Analysis

3 foreach procedure (or SCC) f in reverse topological
order of the program’s call graph do
4 APPLYSUMMARIESANDCLONING(f, C)

INTRAPROCEDURALANALYSIS(f)

6 until a fixed point is reached,

During a top-down phase, pointer resolution is performed
on the constraint graph of a program with the side-effects

of callsites ignored. During a bottom-up phase, a procedure
is analyzed by first applying the side-effect summaries of
its callees at their callsites in the procedure with adaptive
heap cloning enabled (Algorithm 2) and then performing the
intraprocedural analysis discussed in Section 4.1.1.

Heap Cloning Trees (HCTS) There is one HCT per allo-
cation site, with the root denoting the heap object created at
the allocation site. The root objects for different allocation
sites are distinct. For each procedure that contains a (direct
or indirect) call to an allocation site, a heap object returned
by the procedure may be partitioned, i.e., cloned into distinct
child nodes at the distinct calling contexts of the procedure.

Given a program, the HCTs currently used at an iteration
of our analysis collectively define the heap model currently
used for the program at this particular iteration.

Definition 4 (Location Aliasing). Two locations (variables
or heap nodes) o and o' are aliases if o = o' or 0 and o are
from the same HCT such that one is an ancestor of the other.

Example 3. In Figure 5(c), there are two HCTS that would
be created with full heap cloning for the two allocation sites
at csy and csy shown in Figure 5(a). For the HCT on the left,
01 is the root and o2 and o3 are its clones created at callsites
cso and css, respectively. For the HCT on the right, o4 is
the root, o5 and og are its clones created at callsites css and
csg, respectively, and o7 is a clone of o5 created at csr.

Summary Application and Adaptive Heap Cloning A
procedure f is analyzed interprocedurally by Algorithm 2.
There are two tasks. First, the side-effects of all invoked
callees are applied to their callsites in f in the standard man-
ner (lines 1 — 3). Second, every heap object o returned as a
(guarded) pointed-to target (h, 0) of a variable p at a callee
g that is invoked at a callsite cs is cloned into a child node o
in its HCT if o was cloned in an earlier iteration (lines 7 — 8)
or inserted into C in the previous iteration for it to be cloned
now at the current iteration (lines 9 — 11). Once o is cloned
into o/, every occurrence of the old guard h,, in A is replaced
by a new one, h, (lines 12 — 13). Essentially, h,s encodes
the proposition that the heap object returned from the callee
g that calls (directly or indirectly) the unique allocation site
associated with o is now represented as o’.

Example 4. Let us return to our example, by considering
how readArray is analyzed at k = 1 in Figure 5(c) given
C = {o1}. There are two callsites, csy and css, to getMem
When the side-effects of getMem is applied to the two call-
sites, PtrMap(m) = PtrMap(n) = (hy1,01)}. As ol € C,
ol is cloned into 02 and 03 at css and css, respectively.
As a result, PtrMap(m) = {(ho2,02)} and PtrMap(n) =
{(ho3,03)}. Before cloning, the HCT is the one given in
Figure 5(b). After cloning, it becomes the one in Figure 5(c).

4.2 Selecting Candidate Heap Objects for Cloning

Once the points-to information is obtained, a set of alias
queries issued by the compiler are processed. A set of heap



Algorithm 2: APPLYSUMMARIESANDCLONING( f,C)

1 foreach callsite cs in f do
2 foreach callee g invoked at cs do
3 | Apply the side-effect summaries of g to cs

-

foreach variable p accessed in f s.t. (h,0) € PtrMap(p),
where o is returned from a callee g at a callsite cs in f do
Let T be the HCT that o belongs to
if o’s clone at (cs, g) is already on T or o € C then
if o’s clone at (cs, g) is already on T then

| Let o be the clone of 0 at (cs, g) on T
else//ocC
10 Let o be a new clone of o at (cs, g)

Addo' toT

12 Let A’ be obtained from h with every occurrence of
ho being replaced by a new guard h,
13 PtrMap(p) < (PtrMap(p) \ (h,0)) U (k',0")

R-I- -

objects is selected for cloning by Algorithm 3 when doing
S0 may cause some queries to be answered more precisely.
For an expression e, we write A(e) for the set of guarded
pointed-to locations aliased with e. For example, A(xp) =
PtrMap(p). Two expressions e and ¢/ may alias, denoted
A(e) =~ A(e'), if there exist (h,a) € A(e) and (h',d’) €
A(e’) such that a and o’ are aliased locations by Definition 4.

Algorithm 3: CANDIDATESELECTION

input : Q: a set of alias queries

output: C: a set of heap objects for further cloning

C=90

2 foreach (e, e’) € Q such that A(e) ~ A(e') do

3 foreach (h,a) € A(e) and (I, a’) € A(e') such that a
and o are aliased locations by Definition 4 do

-

4 if (h A B') # true then

5 foreach heap object o encoded by h A b’ do

6 if o is further cloneable in its own HCT
along some acyclic call paths then

7 | C«+Cu{o}

Algorithm 3 is straightforward. We choose to clone all
heap objects encoded by h and I’ (greedily) for two rea-
sons. First, each guard is a disjunction of conjuncts (Sec-
tion 4.1.1). Due to flow-insensitivity, each conjunct must be
“cloned”, i.e., refined in order to render its guarded location
spurious. Second, 90% of the guards in the 15 benchmarks
used on average encode one or two heap objects each.

Example 5. Given the points-to information in Fgiure 5(b)
and Q = {(*m, *n), (*p, *q)}. By Algorithm 3, we find that
C = {ol}. So ol is selected to be cloned as in Fgiure 5(c).

4.3 Adaptive Update

The constraint graph of a program is updated by Algo-
rithm 4. First of all, a points-to relation is removed if some

heap objects encoded by its associated guard are to be fur-
ther cloned. In addition, a copy edge is also removed if its
guard encodes some heap objects that are to be cloned.

Algorithm 4: ADAPTIVEUPDATE

input : C: a set of heap objects for further cloning
output: Constraint graph updated
1 foreach o € C do

2 foreach (h,a) € PtrMap(p) s.t. o is encoded by h do
3 | PtrMap(p) < PtrMap(p) \ {(h,a)}
h
4 foreach copy edge p < q s.t. o is encoded by h do
5 | Remove it from the constraint graph

In our implementation, a data structure is maintained so
that each o in line 2 (line 4) is directly linked to the points-to
relations (copy edges) processed in line 3 (line 5).

Example 6. When analyzing readArray by moving from
Figure 5(b) to Figure 5(c), with C = {ol}, o1 is removed
from the points-to sets of m and n and z from the points-to
sets of q and o1. In addition, the two copy edges guarded by
ho1 are also removed. This gives rise to the constraint graph
shown in the middle box given in Figure 5(b).

5. Evaluation

The objective is to show that our query-directed heap cloning
approach is significant faster than full heap cloning subject
to some stopping condition (by about an order of magniti-
tude) while achieving the same precision in answering the
same alias queries issued by the compiler.

We have selected 15 C programs (totalling 840 KLOC),
with 10 being the largest SPEC CPU2000 benchmarks
and 5 being open-source applications: hmmer-2.3 (gene
sequence search), icecast-2.3.1 (a streaming media
server), jpeg2000 (image compression), rasta (speech
analysis), and sendmail-8. 14.2 (an internet email server).
Their characteristics are given in Columns 2 — 5 in Table 2.

Our platform is a 2.8GHz quad-core Intel Xeon running
Redhat Enterprise Linux 5 (2.6.18) with 8GB memory.

5.1 Methodology

We compare QUDA with FULCRA [22], a state-of-the-art
Andersen’s analysis with full heap cloning. QUDA and
FULCRA differ only in terms of their heap cloning algo-
rithms used. Both analyses are context-sensitive by acyclic
call paths for method calls (i.e., local variables). The call
graph for a program is the one built using Andersen’s analy-
sis that is context-sensitive by acyclic call paths for method
calls but without heap cloning. All recursion cycles in a pro-
gram are merged into distinct SCCs so that the procedures
inside are analyzed context-insensitively. There is one com-
mon stopping condition for heap cloning in both cases. As
soon as the number of side-effect-causing statements pro-
moted (i.e., transferred) from an SCC to its a caller exceeds



Program Program Characteristics QUDA Analysis Times (secs)

KLOC | #Procs | #Pointers | #Callsites | #Queries | #Iters | #Nodes | #Edges | FULCRA | QUDA | Speedup
ammp 134 182 9829 1201 38893 2 11690 10267 0.38 0.38 1.00
crafty 21.2 112 11883 4046 15545 3 13725 10887 0.84 0.15 5.60
gap 71.5 857 61435 5980 101187 2 61856 | 70719 22.20 22.20 1.00
gcc 230.4 2256 134380 22353 128713 6 | 135785 | 153220 | 1321.33 92.78 14.24
hmmer 48.1 3868 645 2446 645 7 55285 63197 128.52 11.65 11.03
icecast 22.3 15098 603 468 7774 2 24085 24331 28.30 2.23 12.69
jpeg 26.4 377 19623 1177 8978 3 26884 | 43845 108.90 7.31 14.90
mesa 61.3 1109 44582 3611 144328 5| 101228 | 141379 651.08 93.73 6.95
parser 11.4 327 8228 1782 9529 2 9155 8560 0.96 0.96 1.00
perlbmk 87.1 1079 54816 8470 98090 4 59341 64127 117.17 11.06 10.59
rasta 26.9 299 33387 2782 10892 4 33383 42963 30.10 2.83 10.64
sendmail 115.2 | 107242 2656 16973 144398 3 42887 | 46934 85.60 5.23 16.37
twolf 20.5 194 20773 2074 92917 2 24313 31672 2.56 1.20 2.13
vortex 67.3 926 40260 8522 81542 5 49678 50391 78.65 7.21 10.91
vpr 17.8 275 7930 1995 23557 4 9914 10902 1.32 0.10 13.20
total 840.8 | 134201 451030 83880 906988 659209 | 773394 | 257791 | 259.02

Table 2. Program statistics and experimental results.

50, either analysis becomes context-insensitive for the SCC.
This is the same limit imposed in the original FULCRA im-
plementation released in the Trimaran compiler (4.0).

5.1.1 Implementation

We have implemented QUDA in the Open64 compiler (5.0),
at its IPA (interprocedural analysis) phase. IPA performs
global analysis by combing information from its IPL (Local
part of its Interprocedural Phase, which collects summary
information local to a procedure). We have implemented
FULCRA by following strictly its algorithms [22].

All the analyses are offset-based field-sensitive. However,
arrays are considered monolithic. All heap wrappers are
identified and treated as allocation sites.

Wave Propagation [24] is used to perform constraint res-
olution. Global variables are handled context-insensitively
in the standard manner as in [20, 22]: they are separately
tracked without participating in side-effect summarization.

5.1.2 Experimental Setting

We focus on the alias queries generated in IPA (global
analysis) and WOPT (backend optimizations) for machine-
independent optimizations. We did not include those issued
in CG (code generation) for two reasons. First, the precent-
age of queries from CG is small (< 5% across our programs
tested). Second, once adaptive heap cloning for IPA and
WOPT is completed, the alias information is expected to be
precise enough for CG without a need for further iterations.
We use the Alias Tag mechanism provided internally in
Open64 to answer alias queries. Each Alias Tag, attached
to an expression, represents the memory locations accessed.
Only the queries that needs pointer information are issued.
Let us explain how the analysis times are calculated for
the two analyses. FULCRA performs its pointer analysis be-

fore it is used in [PA and WOPT. So its analysis time is sim-
ply how long it takes to complete its analysis.

QUDA performs its k-callsite-sensitive heap cloning
analysis iteratively, starting from £ = 0. During each it-
eration, the pointer analysis is first performed and then the
alias queries are issued. The queries issued in different itera-
tions may differ due to different optimizations enabled. Ide-
ally, the analysis results for IPA and WOPT in all iterations
should be kept in memory. However, in Open64, IPA and
WOPT are two separate modules, with WOPT invoked after
IPA. During each iteration, we use the SUMMARY mech-
niasm provided internally in Open64 to write the points-to
information obtained in IPA into auxilairy ELF files (*.I
and *.G) so that it can be fed into WOPT. The results from
the alias queries and the constraint graph between two adja-
cent iterations are all communicated using ELF files, which
consumes little time (less than 0.1 secs for each program).
Finally, the time that QUDA takes to analyze a program re-
quiring k iterations to complete is measured to be (k — 1) x
(the time that Open64 spends on its optimizations in IPA and
WOPT) + (QUDA’s analysis time).

5.2 Results and Analysis

We first compare QUDA with FULCRA to demonstrate
the performance improvements achieved by adaptive heap
cloning. We then analyze our benchmarks to provide some
insights on understanding these results.

Comparing with FULCRA As shown in the last three
columns in Table 2, QUDA is 8.82 times faster on average
than FULCRA while achieving exactly the same precision by
design in terms of the alias queries issued by Open64 (Col-
umn 6 in Table 2). To analyze all the 15 programs, QUDA
spends only 259.02 seconds (4+ minutes) while FULCRA
spends a total of 2577.91 seconds (42+ minutes).
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Figure 10. The alias queries and analysis times across different iterations of QUDA.
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Figure 9. Number of heap objects reduced by QUDA over
FULCRA in percentage terms.

Figure 8 compares QUDA and FULCRA in terms of their
analysis times relative to Open64’s compile time for a bench-
mark. On average, QUDA takes only 75.1% of the time
that Open64 spends on compiling the 15 benchmarks but
FULCRA takes 721.0%. This means that exhaustive heap
cloning is not feasible for most of the programs. In con-
trast, query-directed adaptive heap cloning is very promis-
ing. For programs, such as gcc, hmmer, jpeg, mesa and
perlbmk, that take Open64 relatively long times to com-

pile, QUDA’s analysis times are comparable. For the others,
QUDA’s analysis times are small in absolute terms.

Let us take a look at Table 2 again. The analysis for
most programs converges in 1 — 4 iterations, except for
gcc, hmmer, mesa and vortex (Column 7). For the pro-
grams achieving good speedups, their performance results
are consistent with the percentage reductions achieved for
heap objects created as shown in Figure 9. For ammp, gap,
and parser that are not heap-intensitive, QUDA is not ef-
fective (with no speedup over FULCRA in each case). In
ammp, the objects allocated are used either locally or glob-
ally. The other two benchmarks have few allocation sites. In
gap, its loads/stores are mostly on global data structures. In
parser, a large pool is allocated and used throughout.

Understanding QUDA We analyze the eight represen-
tative benchmarks in Figures 10 and 11. The remaining
ones are either too small (crafty and vpr), or not heap-
intensitive (ammp, gap and parser) or able to finish all
the issued queries in two itrerations (ammp, icecast and
twolf).

Figure 10 gives the percentage of queries answered (start-
ing from k& = 1) and the percentage of analysis time elapsed
in an iteration. An alias query for two expressions e and
e/, MayAlias(e, e’), is considered as being answered if (1)
e and e’ are must-not aliases or (2) e and e’ may alias with a
guarded location but the heap objects encoded by its guards
cannot be cloned further. Note that if e and e’ uncondition-
ally alias with a common location (which must be non-heap)
at k = 0, then the alias cannot be disambiguated at any later
iteration. Thus, all such may aliases, which cannot be im-
proved with heap cloning, are not included in our statistics.

From Figure 10(a), we see that the analysis for most of
the benchmarks finishes in up to 5 iterations, except for gcc
and hmmer. With £ = 1, more than half of the alias queries
can be answered in gcc, jpeg, mesa and perlbmk (as in
ammp, icecast and twolf not shown here). However, the
same does not happen for the other four benchmarks, hmmer,
rasta, sendmail and vortex. In the case of sendmail,
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almost all queries can be answered with k£ = 2. For the other
three, some more iterations are needed in order to distinguish
more heap objects created along different acyclic call paths.

Let us move to Figure 10(b) to examine the distribution of
a program’s analysis time across different iterations. £ = 0
(without heap cloning), which is not shown but implied, is
the most expensive. Each subsequent one is much faster (<
15% of the total), because only small parts in the constraint
graph of a program are updated, as observed in Figure 11.

As k increases, the analysis time per iteration for a pro-
gram tends to decrease. There are two reasons behind. First,
fewer and fewer queries need to be answered, as shown
in Figure 10(a). Second, less and less heap cloning is per-
formed, resulting in fewer and fewer changes to the con-
straint graph of the program, as shown in Figure 11. How-
ever, there are some exceptions as in gcc and mesa, which
cost more to analyze when k = 2 and k = 3 than & = 1. This
is due to a large number of heap objects cloned when k = 2
and k£ = 3, causing relatively large parts of their constraint
graphs to be updated, as shown in Figure 11.

Finally, vortex has a large number of queries to answer
when k£ = 2 and k = 3 but the times elapsed in these two
iterations are relatively small. This is because the changes
made to its constraint graph are small as shown in Figure 11.
A similar phenomenon occurs for sendmail.

6. Related Work

There are many prior studies on context-sensitive pointer
analysis. Different types of precision are distinguished if
calling contexts are identified by full call paths [13, 37], as-
sumed aliases at callsites [, 14], acyclic call paths (with re-
cursion cycles collapsed into SCCs) [13, 37] and approxi-
mated call paths within recursion cycles [8, 25, 33, 34].

In most of these earlier efforts, the heap is modeled only
O-callsite-sensitively (without heap cloning). There are a
few attempts considering context-sensitive heap cloning in
whole-program analysis [7, 16, 22, 33, 35, 36].

DSA [16] represents a Steensgarrd’s unification-based
pointer analysis with full heap cloning. The authors showed

that full heap cloning can greatly recover the precision loss
due to pointer unificaiton. Compared to Steensgarrd’s anal-
ysis, Andersen’s analysis is the most precise of all flow- and
context-insensitive pointer analyses. In [22], the authors in-
troduced FULCRA as a context-sensitive Andersen’s analy-
sis by promoting the side-effect-causing statements from a
calee to its callsites. Earlier [23], they showed empirically on
top of their analysis that full heap cloning can improve the
analysis precision, but can also incur uncontrollable over-
head. In this paper, QUDA makes full heap cloning sig-
nificantly more scalably for Andersen’s analysis by being
query-quided. As compared in Figure 1, QUDA can be more
precise than DSA for some programs.

Some analyses incorporate k-callsite-sensitive heap cloning
[22, 35, 36]. As discussed in Section 1, different programs
require different values of k& to make the best tradeoffs be-
tween precision and scalablity. The one-size-for-all solution
with a fixed k for all programs is not an acceptable solution.
In addition, it is difficult to tune each program manually
to find the best k for two reasons. First, this process can
be costly as it involves reanalyzing a program many times.
Second, the best k£ may be elusive as the precision improve-
ment may be unchanged for some consecutive values of k
and suddenly improves at the next value (Figure 10(a)). In
contrast, QUDA achieves the precision of exhaustive heap
cloning iteratively, guided by the queries issued, and is fast
since only small parts of a constraint graph are updated.

In [9], a client-driven pointer analysis is introduced that
adjusts its precision in terms of flow and context sensitivity
according to the needs of client analyses. However, they did
not address heap sensititivity as we do in this work.

In the demand-driven alias/pointer analysis based on
context-free language reachability [21, 27-29], full heap
cloning is naturally supported. in future research, whether
it scales when performed as a whole-program analysis for
large programs remains to be further investigated [36].

Shape analysis [3, 4, 26] reasons about pointer-related
properties concerning recursive data structures. The state-of-
the-art techniques do not scale for large programs.

Recently, sparse pointer analysis [11, 12, 19, 31, 32, 37]
discovers pointer information more quickly across def-use
chains rather than iteratively in a data-flow framework. Our
adaptive heap cloning complements this existing research.

Binary Decision Diagrams (BDDs) have been used to re-
duce the time for handling the exponential growth of calling
paths [2, 33, 39]. Procedure-cloning-based algorithms are
not fast enough for compilers in analyzing large programs.
In [7], strong updates are exploited in a flow-sensitive anal-
ysis with full heap cloning for program verification.

7. Conclusion

In this paper, we make one step forward by solving a chal-
lenging problem in making Andersen’s pointer analysis with
full heap cloning more scalable for optimizing compilers.



By using the alias queries issued from the compiler to guide
heap cloning, our analysis achieves the precision of full heap
cloning while being significantly more scalable.

This work has opened up some new research opportu-
nities. As an example, our adaptive approach allows heap
cloning efforts to be focussed on improving the precision
of the queries ranked in order of their importance (e.g., in
hot vs. non-hot procedures). As another example, iterative
optimization finds the best optimization sequence through
repeated runs on data sets with heuristics [1, 6, 30]. Our ap-
proach may help their techniques converge more quickly.
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