
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

Program Tailoring: Slicing by Sequential Criteria
Yue Li∗, Tian Tan∗, Yifei Zhang, and Jingling Xue

School of Computer Science and Engineering, UNSW Australia

Abstract
Protocol and typestate analyses often report some sequences of statements ending at a program
point P that needs to be scrutinized, since P may be erroneous or imprecisely analyzed. Program
slicing focuses only on the behavior at P by computing a slice of the program affecting the values
at P . In this paper, we propose to restrict our attention to the subset of that behavior at P
affected by one or several statement sequences, called a sequential criterion (SC). By leveraging
the ordering information in a SC, e.g., the temporal order in a few valid/invalid API method
invocation sequences, we introduce a new technique, program tailoring, to compute a tailored
program that comprises the statements in all possible execution paths passing through at least
one sequence in SC in the given order. With a prototyping implementation, Tailor, we show
why tailoring is practically useful by conducting two case studies on seven large real-world Java
applications. For program debugging and understanding, Tailor can complement program
slicing by removing SC-irrelevant statements. For program analysis, Tailor can enable a pointer
analysis, which is unscalable to a program, to perform a more focused and therefore potentially
scalable analysis to its SC -relevant parts containing hard language features such as reflection.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages - Program Ana-
lysis, D.2.5 Testing and Debugging - Code inspections and Debugging aids

Keywords and phrases Program Slicing, Program Analysis, API Protocol Analysis

Digital Object Identifier XXX/LIPIcs.ECOOP.2016.

1 Introduction

Program slicing, supported by industry-strength tools, such as WALA [52] and CodeSurfer [18],
has found many diverse applications, such as program debugging, comprehension, analysis,
testing, verification and optimization [8, 20,43,49]. Given a slicing criterion consisting of a
program point P and several variables used at P [53], program slicing computes a slice of the
program that may affect their values at P in terms of data and control dependences. In the
past three decades, several variations on this theme of program slicing have been proposed,
including static vs. dynamic, backward vs. forward, and closure vs. executable [43,49].

In practice, API protocol analysis [7, 37] and typestate analysis [9, 16, 34] often report
some statement sequences ending at a program point P that needs to be scrutinized, since P
may be erroneous or imprecisely analyzed. Each sequence can represent a valid or invalid
API usage call sequence. Such protocol specifications or violations can also be provided
manually or mined automatically [1,3,17,36,42,60]. As such analyses are either conservative
or unsound, the temporal order specified in a sequence may or may not be feasible. However,
program slicing focuses on P by ignoring this order, which is often essential for analyzing P .

As illustrated in Figure 1, we introduce a new technique, program tailoring to reap
additional benefits missed by program slicing at a point P (e.g., file.write()) by leveraging
the temporal order specified in a new criterion, called a sequential criterion (SC) for P . A

∗ These authors contributed equally to this work

© Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue;
licensed under Creative Commons License CC-BY

30th European Conference on Object Oriented Programming (ECOOP 2016).
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/XXX/LIPIcs.ECOOP.2016.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Program Tailoring: Slicing by Sequential Criteria

Analysis

E.g., API Protocol
Analysis

Outputs

open close
write (Error)

Tailoring
ProgramSequential

Criterion (SC)

[open close write]

Traditional
Criterion

[write]

Techniques
Slicing-Related

Program Debugging
Program Understanding
… ...

Program Analysis

SC-Irrelevant Statements

open write [open write]

 Sliced Program

Tailored Program

Tools

Figure 1 Program tailoring with some of its potential applications highlighted.

SC P consists of one or several statement sequences ending at P , with each representing, e.g.,
a valid API call sequence like file.open()→ file.write() or an invalid API call sequence
like file.open()→ file.close()→ file.write(). In what follows, we will drop P from
SC P when the context is clear or when we are not interested in it. Given a SC P , tailoring
aims to obtain a tailored program, denoted T (SC P), that comprises the statements in all
the possible execution paths passing through at least one statement sequence in SC P in the
given order. By construction, all data and control dependences needed for understanding
the behavior at P affected by SC P are included. Any statement that is not in T (SC P) is
irrelevant to SC P , i.e., SCP -irrelevant. For illustration purposes, we write S(P) to represent
the (backward) slice affecting P obtained by program slicing. Note that slicing all the points
in SC P independently still fails to capture their ordering constraint (and is unscalable, too).

Like slicing, tailoring enables software developers or client applications to inspect only the
interesting parts of a program. Unlike slicing, which focuses on understanding the program
behavior at P , tailoring restricts our attention to the subset of that behavior affected by SC P

only. Due to incompatible criteria used, tailoring can be used either as a complementary
technique to slicing or in cases where slicing is ineffective, as discussed below.

1.1 Goals and Motivations
Given a SC P , we have developed a prototyping implementation of program tailoring, denoted
Tailor, for Java programs, with the following three goals in mind:
Precision Tailor is designed to sharpen the precision of many client applications, as

highlighted in Figure 1, by exploiting the temporal order in a SC P . One significant class
of client applications includes many slicing-related techniques, such as thin slicing [47],
program chopping [22] and value slicing [26]. For a given program, T (SC P) is shown as
the blue circle and S(P) as the white circle. The statements in I(SC P) = S(P)−S(P)∩
T (SC P) are SC P -irrelevant and can thus be pruned away to facilitate program debugging
and understanding by a human. If I(SC P) = ∅, then Tailor is ineffective at P but no
harm is done. If I(SC P) 6= ∅, then Tailor can make slicing more precise, by leveraging
the otherwise wasted SC P information that is widely available. In Section 6.1, we show
that Tailor can improve the precision of thin slicing [47], a state-of-the-art practical
but unsound slicing technique, for Java programs. In Section 6.2, we show that Tailor
can enable a sophisticated pointer analysis for Java, S-2Obj [24], which is unscalable
for a program, to perform a focused analysis on its SC -relevant parts containing hard
language features such as reflection, where existing slicing techniques are ineffective.

Scalability Tailor is designed to work efficiently for large object-oriented programs, for which
traditional slicing [21] is unscalable (even with industry-strength implementations [18,52]),
with the key bottleneck coming from handling of the heap [47]. Like any slicing tool,
Tailor is not always scalable. However, Tailor is designed to scale significantly better

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:3

than traditional slicing, as Tailor avoids handling of the heap by reasoning about
essentially the (un)reachability of a statement towards the statement sequences in a SC P .

Soundiness Tailor is designed to be a practical tool to facilitate programming debugging
and understanding as well as program analysis (among others) for large object-oriented
programs. In this setting, any sound static analysis would be either unscalable or imprecise
due to the presence of many hard language features, such as native code, dynamic class
loading, reflection and multi-threading [30]. Therefore, Tailor is designed to be sound
whenever a sound graph representation is available for capturing all the control flows in a
(single- or multi-threaded) program. In other words, Tailor is always sound with respect
to part of the program behavior modeled. According to [30], “a soundy analysis aims to
be as sound as possible without excessively compromising precision and/or scalability.”
Therefore, Tailor represents one such soundy analysis.

1.2 Challenges and Solutions
We examine some challenges faced in achieving our three goals and describe our solutions:

Precision/Scalability Tradeoffs How do we compute T (SC) efficiently and precisely for
large object-oriented programs? Due to exponential blowup of program paths, both DFS
and BFS are out of question. We formulate the problem of computing T (SC) by solving
an IFDS (Interprocedural Finite Distributive Subset) data-flow analysis problem [38],
efficiently on its interprocedural control-flow graph (ICFG) representation of the program.
To avoid unrealizable paths with mismatched calls and returns, our analysis must be
(fully) context-sensitive in order to achieve useful precision for Java programs. Otherwise,
many unrealizable paths, which go through the constructor of java.lang.Object, cannot
be filtered out, causing T (SC) to be severely over-approximated. However, distinguishing
calling contexts fully with call strings, object-sensitivity [33], and method cloning [54] are
known to be unscalable for large programs [12,44]. We achieve (full) context sensitivity
by solving a CFL-reachability problem over a balanced-parentheses language by matching
call and return edges also in the IFDS framework as described in [38].
How do we ensure that Tailor works effectively for a SC of any given length, which is
defined to be the number of statements in its longest statement sequence? In general,
the longer a SC is, the more SC -irrelevant statements will be removed. We propose to
lengthen any given SC by leveraging the concept of object-sensitivity [33,44] developed
by the pointer analysis community for Java. As a result, some infeasible paths that would
otherwise be introduced are avoided. We will also try to avoid making SC extensions
that make our analysis run longer but contribute nothing to precision improvement.

Soundiness How do we make Tailor as soundly as possible? We decompose the problem of
tailoring a program for a given SC into two sub-problems: (1) building an ICFG, GICFG,
for the program and (2) computing T (SC) from GICFG. Tailor is sound if GICFG is
sound (representation of all control flows in the program). In fact, Tailor is designed
to be practically useful for analyzing the program behavior modeled by GICFG even if
GICFG is unsound. This paper solves (2) while resorting to the state-of-the-art for (1).

1.3 Contributions
We introduce program tailoring, a new technique for trimming a program based on SCs,
which are widely available from other analyses but never exploited by program slicing.
We describe how to extend a given SC for object-oriented programs in order to improve
the precision of program tailoring (by making tailored programs smaller).

ECOOP 2016

XX:4 Program Tailoring: Slicing by Sequential Criteria

We formulate the problem of computing a tailored program as one of solving a data-flow
problem efficiently in the IFDS framework. Tailor, which is implemented in Soot [51],
is released as an open-source tool at http://www.cse.unsw.edu.au/~corg/tailor.
We describe two case studies to demonstrate why Tailor is practically useful on a set
of seven large real-world Java programs, by (1) assisting program slicing with program
debugging and understanding tasks, and (2) enabling a focused pointer analysis on the
parts of a program containing hard language features such as reflection.

2 A Motivating Example

We use an example to describe how Tailor can assist slicing tools to simplify program
debugging and understanding tasks through exploiting the temporal ordering information in
a given SC that is otherwise ignored by program slicing. In Section 6.2, we provide additional
motivations on why Tailor can be useful in simplifying program analysis tasks.

Large object-oriented programs are very difficult to debug and understand, due to the
pervasive use of heap-allocated data, nested data structures, and large libraries with complex
dependences and configurations. Tracing the flow of values via multiple levels of pointer
indirection through the heap across many classes in both the application and libraries is
unworkable. A practical tool is needed to pinpoint relevant statements for the task at hand.

Our Java example is given in Figure 2. The Driver class is used to create and initialize a
Driver object according to some user input (lines 33 – 36) or by default (lines 37 – 41). Then
the corresponding initialization information stored in info is dumped to a log at line 42.

class Driver {
Writer fw = new FileWriter(...);
Driver (String s) {…}
Driver () {…}
void config(String[] args) {

Writer bw = new BufferedWriter(fw);
for(int i = 1; i < args.length; i++)

bw.write(args[i] + "\n");
bw.close();

}
void log(String info) {

fw.write(info);

}
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14

class FileWriter {
boolean isOpen = true;
void close() { isOpen = false; }

if (!isOpen)
throw new IOException();

}
}

void write(...) {

15
16
17
18
19
20
21
22

class BufferedWriter {
Writer out;

void close() {

}
}

out.close();

BufferedWriter(Writer w) {out = w;}

23
24
25
26
27
28
29
30

void main(String[] args) {
Driver d; String info;
if (args[0].equals(…)) {

d = new Driver(args[0]);

} else {

}

d.config(args);
info = getConfigInfo(args);

d = new Driver();
File f = getSystemFile(...);
info = getSystemInfo(f);

d.log(info);
}

40
41
42
43

31
32
33
34
35
36
37
38
39

Figure 2 An example showing how Tailor removes SC line 12-irrelevant statements.

This example has a typical error found in Java programs caused by ignoring the fact
that closing a wrapper file handler will also close its internal file handler. The internal file
handler, fw is passed as an argument at line 6 and assigned to out at line 25. Later, closing
its wrapper file handler, bw, at line 9 will also close out (i.e., fw) at line 27. Then any further
access to a closed fw (e.g., at line 12) will trigger a runtime exception at line 20.

Now we use a static typestate analysis tool Clara [9] to analyze this program. Some

http://www.cse.unsw.edu.au/~corg/tailor

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:5

Potential Point of Failure :
Statement: fw.write(info) at line 12

Related Program Points :
Statement: out.close() at line 27
Statement: new FileWriter(...) at line 2

typestate specifications regarding file operations used will in-
clude “accessing a closed file leads to an error state”. For our
example, Clara produces an error report shown on the left,
marking line 12 as a “potential point of failure”, together with
a sequence of two method calls leading to line 12. We have one

SC line 12 : line 2→ line 27→ line 12. As static analyses like Clara are either conservative
or unsound, there may or may not be an error at line 12. Now our debugging task begins.

The error at line 12 happens only when a Driver object is created in the if branch of
main(). Therefore, a tool that instructs the developer to examine this if branch only would
enable its cause to be identified quickly. In contrast, marking some lines in its matching
else branch as also being relevant can increase human analysis effort significantly (especially
if the developer has to trace the flow of values across many nested heap structures).
Traditional Slicing For large object-oriented programs, traditional (sound) slicing [21,53]
is unscalable or yields slices that are too large for human consumption [47]. Given a
virtual call fw.write(info) at line 12, the set of variables of interest consists of (1) the
receiver reference and the arguments of the call [52], and (2) some relevant variables selected
manually or recognized automatically [2, 13]. In our example, these variables form the set
{fw, info, fw.isOpen}. Then, a (backward) slice that affects their values comprises all the
statements except lines 7 – 8 and 19 – 20. This slice, which includes everything in main(),
contains too many statements that are not all directly relevant to the task at line 12.
Thin Slicing Thin slicing [47] is introduced to facilitate program debugging and understand-
ing for object-oriented programs by trading soundness for scalability and (direct) relevance.
All control dependences and all base pointer data dependences are excluded. Given a point
of interest, thin slicing includes only so-called producer statements that affect directly the
values at the point. Statements that serve to explain why producer statements affect the
point are ignored. For example, given x = p.f and q.f = y, where p and q may be aliased,
q.f = y is a producer statement for x = p.f , because there may be a direct value flow from y

to x. All statements that help explain or establish why p and q are aliases are ignored.
If we adopt the same slicing criterion at line 12 as above, thin slicing will include only

seven statements at lines 2, 12, 16, 17, 36, 39 and 40. Compared with the traditional slice
obtained, this smaller slice still retains line 17, a statement for explaining an immediate cause
of the error at line 12. However, two SC line 12-irrelevant statements at lines 39 – 40 (in the
else branch of main()) are also present, which can cost human analysis effort unnecessarily.
Program Tailoring Given SC line 12 : line 2→line 27→line 12, Tailor produces a tailored
program consisting of all the statements in all execution paths passing through lines 2, 27
and 12 in that order. As line 27 is only reachable from line 9, which resides in the config
method invoked at line 35, the tailored program includes all the lines in the example except
lines 37 – 41 that appear in the else branch of main() and lines 19 – 20.

Let us revisit the two slices obtained above, the traditional slice, Ptrad and the thin
slice, Pthin. Let our tailored program be identified as Ptal. Despite |Pthin| < |Ptal| < |Ptrad|,
tailoring brings several benefits, obtained from exploiting the temporal order of invocation
sequences in SC line 12. First, Ptal is the only one that includes nothing from the else
branch of main(), revealing more clearly to a human debugger that the potential error at
line 12 is triggered by a Driver object created in the if branch of main() (“according to
some user input”) rather than in its matching else branch (“according to some default
configuration”). Such contextual information enables the developer to locate the cause for
the error at line 12 more quickly. In the case of Ptrad and Pthin, the developer may end
up wasting a lot of analysis effort on navigating through a lot of SC line 12-irrelevant code,

ECOOP 2016

XX:6 Program Tailoring: Slicing by Sequential Criteria

highlighted by getSystemInfo() and getSystemFile(), in the else branch. Second, any
statement that is not included in Ptal is SC line 12-irrelevant for understanding the SC -specific
behavior at line 12. Thus, Tailor can make, e.g., thin slicing more effective, by removing
the SC line 12-irrelevant statements Pthin−Pthin ∩Ptal, i.e., lines 39 and 40, from Pthin. Then
Pthin is down to only five statements at lines 2, 12, 16, 17 and 36. Starting from line 17
(an immediate cause for the error at line 12), the developer can trace the flow of isOpen
backwards to find the original cause. Finally, Ptal includes all data and control dependences
reaching line 12 affected by SC line 12, enabling it to be analyzed further by other analyses,
e.g., a pointer analysis, as will be discussed in Section 6. However, Ptrad and Pthin will not
be applicable since Ptrad is unobtainable scalably for large programs and Pthin is unsound.

A

…

B

C

X

X
X

Virtual Call

Branch

Intra-procedural

Inter-procedural
control flow

control flow

Figure 3 Leveraging the order-
ing information SC : A → B → C

to trim irrelevant statements away.

Note that Ptal still contains lines 7 – 8 that do not affect
SC line 12. Removing all such irrelevant statements for large
programs may be neither necessary (due to the first two
points made earlier) nor practical, as a sound slicing tool
would be unscalable. Thus, we have designed Tailor based
on the precision/scalability tradeoffs described in Section 1.

Figure 3 recaps our insight behind tailoring. Given a
SC : A→ B → C, we focus on the behavior at C affected
by a sequential execution of A, B and C. If one point in SC
is reached from only one branch (e.g., the one containing A)
of a multi-way branching statement, then the statements in
the other branches are SC -irrelevant and can be trimmed
away (). This is particularly suitable for object-oriented
languages, since a virtual call site behaves as a multi-way

branch switching to its target methods. For example, B can be regarded as residing in a
target method invoked at the marked virtual call on a receiver object created only at the
allocation site at A. Thus, the other target methods unreachable to C are trimmed away ().

3 Methodology

Figure 4 gives an overview of Tailor, with all the components implemented in this paper
highlighted in blue. Given a program, we rely on the state-of-the-art (shown as “ICFG
Construction”) to build an inter-procedural control flow graph (ICFG), denoted GICFG,
to represent all the possible control flows in the program. A SC is simply a set of one
or more statement sequences ending at the same statement, with all statements identified
by their line numbers, i.e., program points only. The length of a SC is the number of
statements in its longest sequence. SCs can be deduced from the results returned by many
analysis tools such as API protocol analysis [7, 37] and typestate analysis [9, 16, 34]. For
example, a typestate analysis may report a potential error at line C, f.write(), together
with two invocation sequences of related methods, A : f.open() → B1 : f1.close() and
A : f.open()→ B2 : f2.close(), leading to line C. Therefore, we may choose to tailor the
program at C to investigate its behavior affected by SC = {A→ B1→ C,A→ B2→ C}.

Given a SC , a tailored program, T (SC), consists of the statements on all possible execution
paths in GICFG passing through at least one statement sequence in SC . By exploiting the
temporal ordering information in SC , it is possible to scale tailoring significantly better than
slicing for large object-oriented programs and makes it a practically useful technique.

Tailor is sound as it computes T (SC) over-approximately with respect to GICFG. In
contrast, traditional (sound) slicing [21] is unscalable when GICFG is large and thin slicing [47]

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:7

Extended
SC

Bottom-Up
Pass

Top-Down
Pass

TAILOR

Tailored
Program

E.g., API Protocol Analysis

Analysis Tools
SC

Extension
Program

ICFG
Construction

ICFG G

SC-Based Data-Flow Analysis (SCDFA)SC (SCEXT)

Figure 4 Overview of Tailor (with all the components implemented in this paper in blue).

is unsound for GICFG (as it is designed for program debugging and understanding only).
Tailor computes T (SC) in two stages, SC Extension and SC-based Data-Flow Analysis.

In the first stage (Section 3.2), we exploit “branch correlations” in object-oriented programs
to lengthen a given SC in order to avoid some infeasible paths that would otherwise be
introduced in the second stage. In the second stage (Section 3.1), we compute T (SC) by
solving a data-flow problem in order to avoid unrealizable paths efficiently. This design
allows Tailor to achieve good precision and scale well to large object-oriented programs.

3.1 SC-Based Data-Flow Analysis
We compute T (SC) by solving flow- and context-sensitively an IFDS (Interprocedural Finite
Distributive Subset) data-flow problem [38], efficiently on GICFG, via graph reachability.
This formulation of our SC-based data-flow analysis, denoted SCDFA, is significant for three
reasons. (1) With flow-sensitivity, SCDFA can filter out imprecisely ordered statement
sequences in a SC, as many static analyses from which SCs are deduced are flow-insensitive
in order to be scalable. Conversely, precisely ordered statement sequences in SC also enable
SCDFA to filter out irrelevant control flows in tailoring a program. This mutually beneficial
process improves the precision of both parts, therefore avoiding the unnecessary complexity
faced for solving both as one problem. (2) With context-sensitivity, we avoid introducing
unrealizable paths with mismatched calls and returns, which is critical for achieving precision
in computing T (SC). (3) With an IFDS formulation, SCDFA can scale well to reasonably
large object-oriented programs. In particular, (full) context-sensitivity can be realized more
efficiently by solving a CFL-reachability problem over a simplified balanced-parentheses
language. As an IFDS problem, SCDFA has a time complexity of O(ED3), where E is the
number of edges in GICFG and D is the size of the set of SC-related data-flow facts used (i.e.,
the set of suffixes of sequences in SC, as will be clear below and defined in Section 4).

SCDFA starts with a bottom-up pass (BU) and finishes with a top-down pass (TD), with
both performed (fully) context-sensitively. By using the example program from Figure 2,
we first explain the functionalities of two passes and then examine briefly how context-
sensitivity is realized efficiently in the IFDS framework. Suppose we are given a SC as
line 2 : fw = new FileWriter() → line 27 : out.close() → line 12 : fw.write(). For
convenience, we write it as SC : n→c→w. In its GICFG, the allocation site for FileWriter
at line 2 is replicated in the two constructors of Driver. We identify the one in the single-arg
constructor as line 2 (denoted by n) and the one in the non-arg constructor as line 2′ (denoted
by n′). As a result, we finally have a two-sequence SC w = {n→c→w, n′→c→w}.

BU and TD Passes Both passes operate on GICFG, as shown in Figure 5, for our example.
As in any data-flow analysis, all control flow edges in GICFG are treated non-deterministically
executable. Let ENTRY be the entry node of GICFG and EXIT the node marking the point
of interest w at line 12 in SC w. Conceptually, if a sequence S ∈ SC w, which is ncw or n′cw,
lies on a path, then BU must see a suffix of S at every node n on the path backwards from
EXIT and TD must see the corresponding prefix of S at n forwards from ENTRY.

ECOOP 2016

XX:8 Program Tailoring: Slicing by Sequential Criteria

BU TD BU TD

getConfigInfo()36

new Driver() 38

if (...)33

getSystemFile() 39

getSystemInfo() 40

End Node

new Driver(...)34

Entry Node

d.config()35

fw.write() 12

new FileWriter()2 new FileWriter() 2'

out.close()27

d.log() 42
{ }w

{ }w

{ }w

{ }w

{ }w

{ }w

{ }w{ }w

{ }w{ }w

{ }cw

{ }cw

{ }ncw

{ }ncw

{ }ncw

{ }ncw, cw, w

{ }ncw, cw, w

{ }ncw, cw, w

Non-SC Statement

Inter-procedural control flow

SC Statement
Intra-procedural control flow

{ }ncw

{ }ncw

{ }ncw

{ }ncw

{ }ncw

{ }ncw, w

{ }cw, w

{ }cw, w
n n'

c

w

Figure 5 A simplified GICFG of the program given in Figure 2 for illustrating the bottom-up
(BU) and top-down (TD) passes of SCDFA with SC w = {n→c→w, n′→c→w}.

BU computes a global property, PANTI, for every node n in GICFG, backwards against the
control flow, starting at EXIT. PANTIout(n) represents the set of suffixes of some sequences
in SC w that are partially anticipable at the entry of n, i.e., appear on some outgoing path of
n ending at EXIT. In our example, PANTIout(ENTRY) = {ncw, cw,w}. As ncw is partially
anticipable (but n′cw is not) at ENTRY, GICFG contains some paths passing through ncw.

TD computes a global property, PAVAIL, for every node n in GICFG, forwards along
the control flow, starting from ENTRY. PAVAILin(n) specifies the set of suffixes of some
sequences in PANTIout(ENTRY) to represent implicitly (for efficiency reasons) the fact that
their corresponding prefixes are partially available at the entry of n, i.e., appear on some
incoming paths of n starting from ENTRY. For example, PAVAILin(12) = {ncw,w}, indicating
that the prefixes ε and nc of ncw are partially available at the entry of node 12.

For this example, a node n is included in the tailored program if PAVAILin(n)∩PANTIout(n)
6= ∅, since a suffix s ∈ PAVAILin(n) ∩ PANTIout(n) is partially anticipable at the entry of n
and some sequence in SC w with s removed is partially available at the entry of n. In our
example, the tailored program consists of all the lines except lines 38 – 40.
Context Sensitivity Figure 6 illustrates as an example how the TD pass shown in Figure 5
is performed for FileWriter() context-sensitively by solving a CFL-reachability-based

(n (n'

)n')n
getSystemFile() 39d.config()35

new FileWriter()2 new FileWriter() 2'

FileWriter.<init>
ENTER

0 ncw cw w

FileWriter.<init>
EXIT

0 ncw cw w

0 ncw cw w

0 ncw cw w

0 ncw cw w

0 ncw cw w

call-to-return
edge

call-to-start edge

exit-to-return edge

… …

n'n

Figure 6 Context-sensitivity via CFL-reachability.

balanced-parentheses problem, efficiently
in the IFDS framework. For technical
details, we refer to [38]. There are four
data-flow facts, ncw, cw, w, and 0 (for
the empty set). There are two call sites to
FileWriter() at lines 2 and 2′, which are
identified as nodes n and n′, respectively,
with their call-to-start and exit-to-return
edges labeled as (n,)n, (n′ and)n′ appro-
priately. ENTER and EXIT are the start
and exit nodes of FileWriter(), whose
CFG is irrelevant and thus elided. In

SCDFA, the call-to-return edge always serves as a kill edge (to stop the data-flow facts from
bypassing a callee). For each node n, PAVAILin(n) is the set of facts, i.e., suffixes of ncw shown
in black dots. According to Figure 5, PAVAILin(2) = PAVAILin(2′) = {ncw}. If FileWriter()

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:9

is entered from (n and exited from)n, then PAVAILin(ENTER) = PAVAILin(EXIT) = {cw}.
Hence, PAVAILin(35) = {cw}. However, if FileWriter() is entered from (n′ and exited from
)n′ , then PAVAILin(ENTER) = PAVAILin(EXIT) = {ncw}. Hence, PAVAILin(39) = {ncw}.

3.2 SC Extension
Tailor is designed to work effectively with any SC. While an API specification mining
tool [17] may generate SCs longer than 10, an assertion verifier may produce only single-point
SCs. In general, the longer a SC is, the more SC -irrelevant statements will be eliminated.

To improve the precision of SCDFA, we perform first a SC extension pass, denoted SCEXT,
as shown in Figure 4. Given a sequence S ∈ SC , with F being its first point, we look for a
set of n extension points E1, · · · , En, that collectively dominate F , such that any program
execution that passes through F must pass through one Ei. We do so effectively by leveraging
the concept of object-sensitivity [33,44] developed by the pointer analysis community for Java.
For F , its extension points are chosen as the object allocation sites used for representing the
object-sensitive calling contexts for the method containing F . As a result, some infeasible
paths are avoided by exploiting branch correlations in object-oriented programs (Figure 3).

To make SC extensions, we use the points-to information obtained by, e.g., the pointer
analysis performed earlier for building GICFG. Consider an ICFG fragment discussed earlier in
Figure 3. Suppose we are given SC : B → C such that B resides in a target method m for the
virtual call site shown and m is only invokable on the objects created at A, which represents
an object allocation site. Then we can prepend A to SC to obtain ESC : A → B → C.
According to SCDFA, T (SC) will include both branches of “Branch” shown in Figure 3 since
both reach SC but T (ESC) will include only the branch containing A as the other (infeasible)
branch does not reach ESC. However, lengthening a SC increases the number of SC-related
data-flow facts used (Figure 5). So a precision/scalability tradeoff needs to be made.

class PMD {

CMLOptions opts = new CMLOptions(args);
void main (String[] args) {

Renderer renderer = opts.createRenderer();
} }

1
2
3
4
5

9
23
24
25

13
14

… …

renderer.end();

class CMLOptions {

if (…) {
Renderer createRenderer () {

return new EmacsRenderer();
} else if (…)

return new HTMLRenderer();
} else if (…)

return new SummaryHTMLRenderer();
} else if (…)

}
class SummaryHTMLRenderer ... {

renderer = new HTMLRenderer(...);
void render (Writer writer, …) {

renderer.renderBody(writer, ...);

class HTMLRenderer ... {

writer.write(...);
void renderBody (Writer writer, …) {

} } } }

15
16
17
18
19
20
21
22 } }

class AbstractRenderer ... {

render(writer, ...);
void end () {

} }

6
7
8

10
11
12

 Ext 1

 Ext 2

 Ext 3

Figure 7 A code snippet from PMD for illustrating SCEXT in a program understanding task.

We use a real program understanding task to show why SCEXT is useful for real code. PMD
is a static analyzer for analyzing Java programs and can print a range of source code flaws in
different formats such as Emacs, CSV, and HTML. In this task, we want to understand how
PMD renders its outputs in the commonly used HTML format. Figure 7 shows the simplified
code. The only knowledge we have initially is that the HTMLRenderer class is responsible
for writing to the file at line 25, but how it is done is unknown. At this stage, we have a
single-point, SC line 25: line 25, representing just the write statement at line 25.

If we apply SCDFA to SC line 25, T (SC line 25) will include all the lines in the code given.
Below we show how to extend this to ESC line 25 : line 20 → line 11 → line 25 object-
sensitively [33, 44]. If we apply SCDFA to ESC line 25, T (ESC line 25) will now be smaller,
consisting of all the lines except lines 16, 18 and 22 in method createRenderer(). In other
words, all the branches except the one enclosing line 20 in method createRenderer() are

ECOOP 2016

XX:10 Program Tailoring: Slicing by Sequential Criteria

infeasible for SC line 25, according to the points-to information provided for this program.
Let us see how SCEXT works in growing SC line 25 to become ESC line 25. Initially, SC line25

has one statement at line 25, which resides in method renderBody(). The (abstract) receiver
object pointed to by renderer at line 12 is allocated only at the allocation site at line 11
and is considered as the calling context for line 25 in an object-sensitive pointer analysis.
There is another allocation site at line 18 for the same type, HTMLRenderer, but this is not
considered, since the abstract object created at line 18 does not flow to line 12 (according to
the points-to information available). At this stage, we have SC line 25 : line 11→ line 25.

Similarly, we now look for the allocation sites that can be used as the calling contexts for
line 11 contained in method render() at line 10, which is called from this.render() at line 8
in method end() defined in the AbstractRenderer class. Thus, the receiver objects on which
method render() (line 10) is invoked are the ones pointed to by renderer at line 5. These
objects are returned from the call to createRenderer() at line 4. Thus, renderer points
to the objects created by the allocation sites in all different branches in createRenderer().
According to the points-to information, the target method end() invoked at the virtual call
site at line 5 can only be made on an receiver object of type SummaryHTMLRenderer. Thus,
we now have an even longer SC line 25 : line 20→ line 11→ line 25.

The allocation site at line 3 is the object-sensitive context for the target method
createRenderer(), which contains line 20, invoked at line 4. No further extension is possible,
since main() has been reached. Now, we have SC line 25 : line 3→ line 20→ line 11→ line 25.

If we apply SCDFA to this four-point SC line 25, T (SC line 25) will consist of all the lines
except lines 16, 18 and 22. However, including line 3 does not help as it dominates line 20 in
GICFG. By removing it, we obtain ESC line 25 : line 20→line 11→line 25 as desired. Applying
SCDFA to ESC line 25 yields the same tailored program obtained for the three-point SC line 25.

When lengthening SCs, we aim to reduce infeasible paths by exploiting branch correlations.
However, with longer SCs, SCDFA will end up using more data-flow facts, as seen in Figure 5,
making it less efficient than before. So a precision/scalability tradeoff has to be made. Our
key observation is to keep a SC extension point found if it is inside one branch in a multi-way
branching statement or a target method invoked at a polymorphic call site (Figure 3),
provided that the point is not in a cycle. This way, the other branches (or target methods)
are infeasible (with respect to a given SC) and will not show up in the tailored program.

Let us return to the program understanding task at hand. From the tailored program
T (ESC line 25) obtained for ESC line 25, we can see clearly that the allocation site at line 20
in method createRenderer() is responsible for the rendering-related write at line 25.

4 Formalism

We first formalize SCDFA and SCEXT and then prove some properties about Tailor.

4.1 SC-based Data-Flow Analysis
We provide a context-insensitive formalization of SCDFA as context sensitivity is achieved on
top of this formalization via CFL-reachability, as shown in Figure 6. Essentially, we describe
the data-flow equations needed for solving its BU and TD passes in the IFDS framework [38].

The IFDS problem framework is precise and efficient for solving data-flow problems with
three properties. First, the set D of data-flow facts is finite. Second, the domain and range
of each flow, i.e., transfer function is the power set of D, denoted 2D, the lattice ordering
relation v on 2D is ⊆ or ⊇, and the meet operator u is ∩ or ∪. Finally, each fow function f
must be distributive over 2D: ∀S1, S2 ∈ 2D: f(S1 u S2) = f(S1) u f(S2).

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:11

Below we describe our BU and TD passes, including their finite domain D and data-flow
equations used. In both cases, the ordering relation v is ⊇ and the meet operator u is ∪.
All our transfer functions given below are easily seen to be distributive over 2D.

Domain A SC P is a set of statement sequences ending at the same statement P , with all
statements identified by their line numbers (or labels). The domain D for BU and TD is:

D =
⋃

S∈SCP

Suffix(S) (1)

where Suffix(S) returns the set of all suffixes of S, including ε (the empty string). Note that
ε is necessary when P appears in a control-flow cycle (i.e., a loop or recursion). In the IFDS
framework, the data-flow facts used are generated on the fly for efficiency reasons.

We make use of the car , cdr and cons functions operating on sequences in the standard
manner. If s and s′ are two sequences, then s++ s′ returns the concatenation of s and s′.

Graph Representation The BU and TD passes operate on the GICFG representation of
a program. Without loss of generality, we assume that a node, i.e., basic block in GICFG
contains one single statement. Thus, a node and the statement represented by it are used
interchangeably. Let ENTRY be the entry node of GICFG and EXIT be the node for P in
SC P . Given a node n, succ(n) (pred(n)) is the set of its successors (predecessors) in GICFG.

BU: Bottom-Up Analysis BU computes a global property, PANTI, for every node n in
GICFG, backwards against the control flow, starting at EXIT. PANTIout(n) represents the set
of suffixes in D that are partially anticipable at the entry of n, i.e., that appear on some
outgoing path of n ending at EXIT. Thus, we have the following initialization at EXIT:

PANTIout(EXIT) = {P} (2)

which means that our point of interest P in SC P is partially anticipable at the entry of EXIT.
The transfer equations at a node n in GICFG are given by:

PANTIin(n) =
⋃

n′∈succ(n)
PANTIout(n′) (3)

PANTIout(n) = GENBU(n) ∪ PANTIin(n) (4)

Due to the presence of PANTIin(n) in (4), whatever is anticipable at the exit of n are also
anticipable at the entry of n. No old data-flow facts (i.e., known suffixes) are killed, because
some sequences in SC P may share some common suffixes but have different prefixes. GENBU

is applied to generate all the new suffixes partially anticipable at a node:

GENBU(n) =
⋃

s ∈ PANTIin(n)

ADD-SUFFIX-SEENBU(n, s) (5)

Given a partially anticipable suffix s at the exit of a node n, cons(n, s) will also be
partially anticipable at the entry of n if cons(n, s) ∈ D. Hence, we have:

ADD-SUFFIX-SEENBU(n, s) =
{
{cons(n, s)} if cons(n, s) ∈ D

∅ otherwise (6)

The following lemma follows immediately from the data-flow equations (2) – (6).
I Lemma 1. For any node n, ε /∈ PANTIin(n) and ε /∈ PANTIout(n) always hold.
I Example 2. Figure 5 illustrates the BU pass with the data-flow results shown. We start with
PANTIout(EXIT) = PANTIout(12) = {w} and finish with PANTIout(ENTRY) = {ncw, cw,w}.

ECOOP 2016

XX:12 Program Tailoring: Slicing by Sequential Criteria

TD: Top-Down Analysis TD computes a global property, PAVAIL, for every node n in
GICFG, forwards along the control flow, starting from ENTRY and visiting only the nodes
reachable in BU . The basic idea is simple. A statement sequence S ∈ SC P starts at ENTRY
and flows forwards along the control flow and ends up with its first statement car(S) removed
on encountering the node representing car(S). Therefore, a node n is included in the tailored
program T (SC P) if the remaining suffix of S that flows to the entry of a node n appears also
in PANTIout(n) or the entire sequence S has been removed upon reaching n (when P in SC P

appears in a control-flow cycle). Formally, PAVAILin(n) computes the set of suffixes s ∈ D to
represent implicitly (for efficiency reasons) the fact that their corresponding prefixes p, such
that p++ s = S for some S ∈ SC P , are partially available at the entry of n.

As all the sequences in SC P \ PANTIout(ENTRY) have been filtered out by BU , we only
need to focus on the ones partially anticipable at ENTRY. Hence, our initialization is:

PAVAILin(ENTRY) = SC P ∩ PANTIout(ENTRY) (7)

The transfer equations at a non-ENTRY node in GICFG are given by:

PAVAILin(n) =
⋃

n′∈pred(n)
PAVAILout(n′) (8)

PAVAILout(n) =
{

GENTD(n) if PANTIout(n) 6= ∅
∅ otherwise (9)

During the top-down pass, we only need to visit a node n if n is reachable during the
bottom-up pass, which happens when PANTIout(n) 6= ∅.

Unlike GENBU, GENTD may preserve/kill an old data-fact and generate some new ones:

GENTD(n) =
⋃

s ∈ PAVAILin(n)

ADD-SUFFIX-EXPECTED-TO-SEETD(n, s) (10)

As a suffix s ∈ PAVAILin(n) represents the fact that its corresponding prefix p, such that
p++ s = S for some S ∈ SC P , is partially available at the entry of n, we have:

ADD-SUFFIX-EXPECTED-TO-SEETD(n, s) =
{
{cdr(s)} if car(s) = n

{s} otherwise (11)

There are two cases. If car(s) = n, then cdr(s) is generated, indicating that p++n is partially
available at the exit of n. At the same time, s is killed (for efficiency not correctness), as s
would be redundantly propagated otherwise. If car(s) 6= n, then s is simply preserved.

I Example 3. Figure 5 illustrates the TD pass with the data-flow results shown. We start with
PAVAILin(ENTRY) = SC w ∩ PANTIout(ENTRY) = {ncw} and finish with PAVAILin(EXIT) =
PAVAILin(12) = {ncw,w}. At node 27, PAVAILout(27) = {w}, since PAVAILin(27) = {cw}.

Tailored Program Finally, a node n is included in T (SC P) if TAILORED(n) holds:

TAILORED(n) = PAVAILin(n) ∩ PANTIout(n) 6= ∅ ∨ ε ∈ PAVAILin(n) (12)

The first disjunct suffices if P in SC P is not in a cycle (in GICFG). If s ∈ PAVAILin(n) ∩
PANTIout(n), then a prefix p, such that p ++ s = S for some S ∈ PAVAILin(ENTRY), is
partially available at the entry of n, then n must be in T (SC P), since it lies on a path
passing through all statements in S. If P is in a cycle, then the whole sequence S that starts
at ENTRY ends up being removed eventually, resulting in ε ∈ PAVAILin(n). Then n should
be included in T (SC P) as well. Note that ε /∈ PANTIout(n) by Lemma 1.

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:13

I Example 4. According to the data-flow facts shown for the program given in Figure 5,
the tailored program consists of all the lines except lines 38 – 40 according to (12).

4.2 SC Extension
We make use of the points-to information provided by a pointer analysis to extend a SC to
reduce infeasible paths that would otherwise be introduced by SCDFA. Given a statement
sequence S ∈ SC , SCEXT will lengthen it recursively by prepending the object allocation sites
representing the calling contexts for the method containing its first statement, as demonstrated
in Section 3.2. The general algorithm for lengthening a sequence S : L1→· · ·→Ln is as
follows. Suppose that L1 resides in a method m invoked at a virtual call site. Let A1, · · · , Ar

be its all r allocation sites for creating the receiver objects on which m is invoked. Then S
grows into A1→L1→· · ·→Ln, · · · , Ar→L1→· · ·→Ln, and the same process continues.

With longer SCs, SCDFA will be less efficient due to more data-flow facts introduced. We
will keep a SC extension point if it is embedded in a branch and ignore it otherwise. This way,
SCEXT can enable SCDFA to avoid infeasible paths more effectively by exploiting branch
correlations. A statement is said to be embedded in a branch if it appears intraprocedurally
(directly) or interprocedurally (indirectly) inside a multi-way branching statement or a target
method invoked at a polymorphic call site (i.e., a virtual call site with at least two target
methods). Let Stmts be the set of all statements in GICFG. We use the following function
InBranchOrVC : Stmts→ boolean to capture formally this branch-embedding relation:

InBranchOrVC(s) =

true if InIntraBranch(s)
false else if InMain(s)

InInterBranchOrVC(s) otherwise
(13)

where InIntraBranch(s) determines if s appears directly in a branch or not and InMain(s)
tells us whether s appears directly in main() or not. InInterBranchOrVC : Stmts→ boolean
checks to see whether s is embedded in a branch interprocedurally or not:

InInterBranchOrVC(s) =
∨

c∈Caller(m)

(
InBranchOrVC(c) ∨ |Callee(c)| > 1

)
where m is the method containing s

(14)

where Caller(m) returns the set of call sites at which m is invoked. For each call site c, there
are two disjuncts. One represents a recursive application of InBranchOrVC defined in (13)
to c. The other one, |Callee(c)| > 1, evaluates to true if the call site c is polymorphic.
I Example 5. For the program in Figure 7, as discussed in Section 3.2, SCEXT starts with
SC line 25: line 25, grows it to SC line 25 : line 3 → line 20 → line 11 → line 25, and finally
settles with ESC line 25 : line 20→ line 11→ line 25. Let us see why a SC extension point is
kept or ignored. Line 3 should be ignored since InBranchOrVC(line 3) = ¬InMain(line 3) =
false. Line 20 is retained since InInterBranchOrVC(line 20) = InIntraBranch(line 20) =
true. Finally, line 11 is also retained because we have InInterBranchOrVC(line 11) =
InInterBranchOrVC(line 8) = InInterBranchOrVC(line 5) = |Callee(line 5)| > 1 = true,
where the call site at line 5 is polymorphic according to the points-to information provided.

In practice, SCDFA does not usually benefit from a SC extension point if it appears
in a control-flow cycle (a loop or a recursion cycle) in GICFG. Such cycle-related points
are identified and ignored as well. To detect recursion cycles effectively, we apply Tarjan’s
algorithm [48] to find strongly connected components on the call graph of the program. To
detect (natural) loops, we resort to a textbook loop detection algorithm. The statements
reachable directly or indirected from a loop are also considered as being part of the loop.

ECOOP 2016

XX:14 Program Tailoring: Slicing by Sequential Criteria

4.3 Properties
We prove that Tailor is sound (Theorem 3), by showing that SCDFA and SCEXT are sound
with respect to GICFG (Theorems 1 and 2), and consequently, that every tailored program is
SC -executable, i.e., executable along all execution paths passing through a given SC.

statement s, s1, s2, ..., sm ∈ S
execution e : s1s2...sm ∈ EG

sequence sq : s1s2...sm ∈ SC
relation EG × SC e sq

relation EG × S e→ s

execution set Esq = {e ∈ EG | e sq}
statement set Ssq = {s ∈ S | e ∈ Esq, e→ s}

Figure 8 Notations used in proofs.

We make use of the notations
given in Figure 8 in our proofs. S is a
set of statements in GICFG. EG rep-
resents all runtime executions of the
program represented by GICFG and
each execution e consists of a se-
quence of statements in S. We write
e sq if execution e contains all the
statements in a statement sequence
sq = s1s2 · · · sm in exactly the same

order, ending at sm. We write e→ s if execution e contains statement s. Esq is the set of all
executions that pass through a given sequence sq. Finally, Ssq is the set of all statements
that appear in all possible executions e (passing through sq), where e ∈ Esq.

The following theorem states that SCDFA is sound with respect to GICFG.

I Theorem 1 (Soundness of SCDFA). Let GICFG be the ICFG of a program. Let SC be given
(as defined in Section 3). If sq ∈ SC, then s ∈ Ssq =⇒ TAILORED(s).

Proof. We show that for every execution e such that e sq, where sq ∈ SC , TAILORED(s),
which is given in (12), holds for all statements s such that e → s. Let sq = s1s2...sm.
Since e sq, every statement si must appear at least once in e or more in the presence
of control-flow cycles. For convenience, let s0

e be a fictitious statement at the beginning
of e. Let sm+1

e be the last occurrence of sm in e, i.e., the last statement in e. Let si
e be

the first occurrence of si in e after si−1
e , where 1 6 i 6 m. We can now divide e into

m+ 1 sub-executions, e1, e2, · · · , em+1, where ei, represents the sub-sequence between si−1
e

(exclusive) and si
e (inclusive). We will still write ei → s if ei contains a statement s.

As e sq is an execution, then e represents a realizable path, which must appear in
GICFG. In SCDFA, its BU and TD passes are distributive over 2D given in (1), performed
context-sensitively. Thus, we only need to focus on this path. Note that in our formulation
of SCDFA, a statement si and its corresponding node ni in GICFG are used interchangebly.

During the BU pass in terms of (2) – (6), we must have:

∀ 1 6 i 6 m : ∀ ni s.t. ei → ni : sisi+1 · · · sm ∈ PANTIout(ni) (15)
∀ nm+1 s.t. em+1 → nm+1 : sm ∈ PANTIout(nm+1) (16)

which implies sq ∈ PANTIout(ENTRY) (since ∀ n1 s.t. e1 → n1 : s1s2 · · · sn ∈ PANTIout(n1)).
During the TD pass, sq ∈ PAVAILin(ENTRY) by (7). By (8) – (11), we must have:

∀ 1 6 i 6 m : ∀ ni s.t. ei → ni : sisi+1 · · · sm ∈ PAVAILin(ni) (17)
∀ nm+1 s.t. em+1 → nm+1 : ε ∈ PAVAILin(nm+1) (18)

(Note that (18) is needed only if em+1 is non-empty, which happens when sm is in a
control-flow cycle.) Hence, TAILORED(s) holds for every statement s such that e→ s. J

For a SC , we write α(GICFG,SC) to represent the set of all executions in GICFG that pass
at least one sequence in SC, i.e., α(GICFG,SC) =

⋃
sq∈SC Esq. Theorem 1 can also be stated

equivalently as follows: TAILORED(s) holds for every s ∈ {s | e ∈ α(GICFG,SC), e→ s}.

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:15

The following theorem states that SCEXT is sound since only infeasible paths are ignored.

I Theorem 2 (Soundness of SCEXT). Let ESC be extended from a given SC by applying
SCEXT in GICFG, then α(GICFG, SC) = α(GICFG, ESC).

Proof. According to the algorithm of SCEXT operating in GICFG (Section 4.2), all possible
object-sensitive calling contexts for a method containing the first point F in a sequence of
SC are considered as the extension points of F . According to (13) and (14), no feasible
paths with respect to SC are excluded if an extension point of F is not selected. Thus, only
infeasible paths with respect to SC are ignored when SC is extended into ESC this way. J

I Theorem 3 (Soundness of Tailor). Tailor is sound with respect to GICFG.

Proof. Follows from Theorems 1 and 2. J

I Theorem 4 (SC-Executability). T (SC) obtained in GICFG is SC -executable.

Proof. By Theorem 3, α(GICFG,SC) is included in the tailored program. J

5 Implementation

We have implemented Tailor (http://www.cse.unsw.edu.au/~corg/tailor) in Soot,
a framework for analyzing and optimizing Java programs [51]. To build the ICFG for a
program, we apply Soot’s Spark pointer analysis [27]. During the ICFG construction,
Soot models the effects of native methods by using abstract Java code and creates the
corresponding control-flow edges. In addition, Soot considers both explicit and implicit
exceptions and treats the exceptional edges as normal control-flow edges. Finally, Soot
models thread creation and running as method calls by assuming that threads execute in
a sequential order. How to build ICFGs to support multi-threading soundly, precisely and
scalably for Java programs is a big challenge in its own right.

Tailor has two main components, SCEXT and SCDFA. When extending SCs, we make
use of the points-to information provided by Spark to find the required object allocation
sites object-sensitively. To perform SCDFA, we choose Heros [10] as the IFDS solver for its
BU and TD data-flow problems, because it can be easily plugged into the Soot framework.

6 Evaluation

Program tailoring is designed to be sound for a program (with respect to its ICFG, as proved
in Section 4), with useful precision and good scalability for large object-oriented programs.
This section serves to evaluate the last two goals by answering three research questions:
RQ1: Is Tailor useful to support program debugging and understanding, in practice?
RQ2: Is Tailor useful to support program analysis, in practice?
RQ3: Is Tailor scalable for large object-oriented programs, in practice?

To address RQ1 and RQ2, we conduct two real-world case studies. In one study, we
demonstrate that Tailor can assist a state-of-the-art slicing tool, a thin slicer [47] implemen-
ted in WALA [52], to simplify debugging and understanding tasks. In the other study, we
demonstrate that Tailor can enable a sophisticated pointer analysis algorithm, S-2Obj [24],
provided in a state-of-the-art pointer analysis tool for Java, Doop [14], to investigate the
multi-object typestate (reflective) behavior in programs for which S-2Obj is unscalable as a
whole-program analysis. In both studies, all SCs used are deduced from the results generated
by state-of-the-art clients, Clara [9] and Solar [29], rather than injected manually.

ECOOP 2016

http://www.cse.unsw.edu.au/~corg/tailor

XX:16 Program Tailoring: Slicing by Sequential Criteria

To address RQ3, we perform a stress test on Tailor by using a large number of randomly
generated SCs. Tailor scales well to relatively large Java programs, suggesting that program
tailoring represents an attractive option as a practical tool.

Table 1 Program characteristics. For each program, the numbers are produced for both the
application and library code, including only reachable classes, methods and statements by Spark [27].

Application Description #Classes #Methods #ByteCodes LOC
ANTLR (2.7.2) a recognizer and parser generator 2049 13,751 261,727 90,404
Avrora (1.7.117) an assembly program simulator 3196 17,186 276,340 92,505
Eclipse (4.5) IDE 2517 16,953 305,575 106,640
Apache™ FOP (0.20.5) a formatting-objects processor 4681 28,105 492,686 171,087
JBoss AS (4.0.2) an application server 4039 25,634 448,163 154,290
PMD (4.0) a source code analyzer 4234 26,623 467,249 161,300
Apache Tomcat™ (8.0.24) a Java Servlet container 3920 25,157 432,652 150,074

Our experiments are carried out on an Xeon E5-2650 2GHz machine with 64GB RAM.
We have selected seven large and diverse real-world Java programs under a large library, JDK
1.6.0_45, described in Table 1. For each program, with its bytecode representation generated
by Soot [51], all the statistics are calculated by using Soot’s Spark pointer analysis [27].

6.1 RQ1: Program Debugging and Understanding
Wala [52] includes a traditional slicer [21] and a thin slicer [47] (denoted TSlicer), with
industry-strength implementations. Traditional slicing does not scale to large object-oriented
programs due to the key bottleneck in handling of the heap [47]. Thin slicing [47] alleviates the
bottleneck by including only producer statements that affect directly the values at a program
point. This unsound design can facilitate program debugging and understanding [25,50,59].

By focusing on producer statements, TSlicer is surprisingly effective, by producing often
small (or thin) slices quickly. In this study, we show that Tailor can make TSlicer even
more effective, as highlighted in Figure 1, by exploiting the temporal order of statements in
SCs to prune away more statements irrelevant to SCs. In addition, Tailor achieves this
improved precision by trimming a program more efficiently than TSlicer does. These results
are significant given TSlicer’s unsoundness (even for GICFG) and well-tuned implementation
in Wala, demonstrating clearly the practical benefits of our SC-oriented program tailoring.

To ensure a fair comparison between Tailor (implemented in Soot) and TSlicer
(implemented in Wala), we have configured Soot to minimize the differences in the ICFGs
constructed for a program in both frameworks. There are four main contributing factors: (1)
pointer analysis, (2) reflection analysis, (3) exception handling, and (4) native code handling.
Our bottom-line is to make sure that Tailor is never more precise than TSlicer in dealing
with (1) – (4). For (1), we select Wala’s VanillaZeroOneCFA option to perform its allocation-
site-sensitive pointer analysis, which is more precise than Soot’s Spark pointer analysis,
as Spark merges some java.lang.String allocation sites for improving performance. For
(2), we use Wala’s no_flow_to_casts option to resolve reflective calls. In Soot, we have
taken advantage of Solar [29] to perform reflection resolution in the same way. For (3) and
(4), Wala and Soot model the same native methods in JDK 1.3 and handle both explicit
and implicit exceptions with some differences. However, these differences do not affect the
precision achievements obtained, validated by having inspected all results manually.

Both Tailor and TSlicer trim a program based on the writer/OutputStream-related
SCs deduced from the results reported by a state-of-the-art typestate analysis tool, Clara [9].
TSlicer is run context-sensitively by using the last point in each SC as its slicing criterion

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:17

Case 1: TAILOR helps filtering out false alarms
Number of SCs:

Precision improved:

Size range
of thin slices

Before After
0

max

min

23

5

Distributed in programs: PMD, ANTLR
43

100%

77 SCs in total
(Classified into four cases)

TAILOR is useful for Cases 1, 2 and 3 (82%)
but not for Case 4 (18%)

Case 4: TAILOR fails to help
Number of SCs:

Precision improved:
Before After

max

min

31

6

Distributed in programs: ANTLR, FOP
14

0%

max

min

31

6

Case 3: TAILOR helps with ESC
Number of SCs:

Precision improved:
Before After

max

min

22

9

Distributed in programs: FOP, PMD
13

max
min

13
5

46%(avg), 41%(min), 50%(max)

Case 2: TAILOR helps without ESC
Number of SCs:

Before After

12

max

min

43

13

Distributed in programs: ANTLR, Avrora, FOP, PMD
7

max
min

20

Precision improved: 15%(avg), 7%(min), 56%(max)

TAILOR

TSLICER

TAILOR

TSLICER

TAILOR

TSLICER

TAILOR

TSLICER

Size range
of thin slices

Size range
of thin slices Size range

of thin slices

Figure 9 A case study demonstrating how Tailor enables TSlicer to remove more SC -irrelevant
statements based on the SCs deduced from the results reported by a typestate analysis, Clara [9].

with the variables of interest selected automatically. However, the results in the following
cases are excluded: (1) Clara crashes due to runtime exceptions in the case of Eclipse,
JBoss and Tomcat, (2) TSlicer is unscalable for a criterion (within 1 hour), and (3) the
size of a thin slice is less than 5 (small enough for human consumption). Finally, 77 SCs are
considered in total, involving 66 errors and 11 program points (like the one in Figure 7) for
our debugging and understanding tasks. All these SCs are provided in our artifact.

Results and Analysis Figure 9 presents the final results, with all the 77 SCs classified
into four cases. In each case, we give the number of SCs included, the names of SC-
contributing programs, the size ranges of TSlicer’s thin slices before and after the SC -
irrelevant statements detected by Tailor are removed, as well as the minimum, maximum and
average precision improvements achieved. Note that Wala’s traditional slicer is unscalable
for any SC (within 1 hour). Below we first analyze each case and then make some remarks.

Case 1 There are 43 SCs distributed in two programs, ANTLR and PMD. TSlicer has
produced thin slices ranging from 5 to 23 statements, requiring further human analysis efforts.
In contrast, Tailor has produced only zero-sized tailored programs, declaring all the 43
errors as false alarms with respect to the given SCs. Furthermore, as Clara is sound (with
respect to GICFG), all the 43 errors are false alarms for the 43 reported locations.

Let us consider a SC from PMD. Clara reports a “write after close” typestate error for a
call to writer.write() at line 33 in class net.sourceforge.pmd.renderers.TextRenderer,
together with four two-statement sequences of method calls leading to this potential error loc-
ation: line 290→ line 325, line 290→ line 337, line 292→ line 325, and line 292→ line 337.
These five calls are distributed in classes net.sourceforge.pmd.PMD and the afore-mentioned
class TextRenderer. Given this four-sequence SC ending at line 33, Tailor recognizes that
all these sequences are infeasible since line 33 is not reachable from lines 325 and 337.

Clara reports such false errors as it is partially context-sensitive and intraprocedurally
but not interprocedurally flow-sensitive. This is a typical trade-off made by static analyses,
which must, for example, reason about complicated typestate or protocol information as well.
Otherwise, full context- and flow-sensitivity is unattainable scalably for large programs [9].
Unlike these client analyses, Tailor reasons about the (un)reachability of a statement towards

ECOOP 2016

XX:18 Program Tailoring: Slicing by Sequential Criteria

a SC, making it substantially more amenable to a fully context- and flow-sensitive analysis.
Tailor’s success in this case is potentially replicable for other analysis tools [9, 29,37].

Case 2 There are 7 SCs spread across ANTLR, Avrora, FOP and PMD. In this case, SCEXT
is not useful. These SCs share the same characteristic as SC line 12: line 2→line 27→line 12
from our motivating example in Figure 2 (Section 2). For each SC, Tailor has succeeded in
removing some SC -irrelevant statements in some branches from TSlicer’s thin slices.

Case 3 There are 13 SCs found in FOP and PMD. In this case, Tailor will be ineffective unless
SCEXT is turned on. We take a SC in FOP ending at line 101 in class CommandLineStarter
to show how Tailor can simplify debugging tasks for object-oriented programs enormously.
Given this point of interest, TSlicer returns a thin slice containing nine statements, which are
distributed in five classes, including AWTStarter, PrintStarter and CommandLineStarter
in package org.apache.fop.apps, where the first two are the subclasses of the last one.
The first statement of this SC resides in CommandLineStarter’s run() method, which is
overridden in the two subclasses. During the SC extension, the object allocation site at line
522 in the CommandLineOptions class is found to be the sole object-sensitive context for
CommandLineStarter’s run() method. Therefore, with this extension point, Tailor is able
to remove four irrelevant statements, line 94 in AWTStarter, line 91 in PrintStarter, and
lines 494 and 508 in CommandLineOptions, from TSlicer’s thin slice, saving a human a lot
of debugging effort on navigating through many irrelevant classes unnecessarily.

Case 4 There are 14 SCs found in ANTLR and FOP. Tailor fails to reduce TSlicer’s thin
slices any further. By including producer statements (and ignoring the others unsoundly),
TSlicer has happened to eliminate all the SC - irrelevant statements removed by Tailor.

Remarks First, Tailor has succeeded in making 82% (56%) of TSlicer’s 77 thin slices
smaller (empty), as shown in Figure 9, even though TSlicer is known to return small slices

TSLICER
TAILOR

100

200

300

400

500
Time (secs)

77 SCs in Figure 9

3017s 3072s

774s

797s 2800s ~ 3200s

Figure 10 Efficiency of Tailor vs. TSlicer.

unsoundly. Second, Tailor aims to eliminate
SC -irrelevant statements. As discussed in Sec-
tion 2 and elaborated in Case 3, removing sev-
eral or even just one SC -irrelevant statement
can save a lot of debugging effort, particularly
for large object-oriented programs. Finally,
Tailor is fast, as compared with TSlicer
in Figure 10. To make the analysis times
for Tailor visible, the longest analysis times
spent by TSlicer on several SCs are depicted
at the top-left corner. In Case 4, Tailor is
ineffective, but no harm is done, as Tailor is
fast. Without Tailor, the practical benefits

reaped from exploiting the temporal order in the other SCs in Cases 1 – 3 will be missed.

6.2 RQ2: Program Analysis
In this second case study, we demonstrate that Tailor can be invaluable for pointer analysis
(the foundation for virtually all other analyses). In particular, we show how Tailor can
enable today’s most sophisticated pointer analysis algorithms, which are unscalable for a
program, to perform a more focused and thus potentially scalable analysis to its specific
parts that contain usually hard-to-analyze language features such as reflection [30]. For

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:19

a Java program, a pointer analysis requires a reflection analysis to resolve part of its call
graph representing reflective calls, and conversely, a reflection analysis requires the points-to
information from a pointer analysis to discover the reflective targets at a reflective call site.

Reflection analysis finds many real-world applications, such as bug detection and security
analysis [5, 11,28,31], in its own right. Despite recent advances [28,29,45], a sophisticated
reflection analysis does not co-exist well with a sophisticated pointer analysis, since the latter
is unscalable for large programs [28,29,31,45]. If a scalable but imprecise points-to analysis
is used instead, the reflection analysis may introduce many false call graph edges [29, 45],
making its underlying client applications to be too imprecise to be practically useful.

We show how Tailor can alleviate this problem. We choose Doop [14], a state-of-the-
art pointer analysis framework for Java, and focus on its three pointer analyses, 1-Call,
S-2Type and S-2Obj. 1-Call is usually the most scalable but most imprecise. S-2Obj is
the most precise but the most unscalable. S-2Type enjoys both precision and scalability,
with its precision being always not better than S-2Obj [24]. For reflection analysis, we
choose Solar [29], a state-of-the-art reflection analysis built on top of Doop. Our program
analysis task is to investigate the multi-object typestate behavior at some reflective call
sites as precisely as possible, by running Solar with S-2Obj. If S-2Obj is scalable for
a program, we are done. Otherwise, we run Solar together with 1-Call, and if that is
unscalable, with S-2Type on the same program. If either is scalable, we treat Solar as a
client analysis for producing the required SCs. To investigate the behavior at a reflective call
site P , say, m.invoke(), we let its SC P be all possible sequences of API method calls ending
at P , such as Class.forName()→ c.getMethod()→ m.invoke(), found by Solar. Then
we run S-2Obj on the tailored program T (SC P). If SC P represents all possible sequences
of method invocations for P , then T (SC P) exhibits the same behavior at P as in the whole
program (Theorem 3). Otherwise, a SC P -specific behavior at P is analyzed.

For the seven applications listed in Table 1, S-2Obj is only unscalable for Eclipse, Tomcat

0

50

100

150

200

250

300
 1-CALL

Number of resolved
reflective targets

Resolved
Imprecisely

Reflective call sites: Class.newInstance()/Method.invoke()

S-2TYPE

Figure 11 Reflection resolution for
Eclipse, Tomcat and JBoss.

and JBoss, which will therefore be the focus of
our second study. Figure 11 shows the number
of reflective targets resolved at all call sites to
Class.newInstance()/Method.invoke() (the
most commonly used [28], in practice) in the
application code of Eclipse, Tomcat and JBoss,
by 1-Call (the red dots) and S-2Type (the
green dots from JBoss as 1-Call is unscalable).
There are a total of nine reflective call sites with
a high number of reflective targets resolved, pos-
sibly imprecisely by 1-Call or S-2Type, which
result in a total of nine SCs deduced from their
corresponding Solar analysis.

Table 2 shows our results. For the nine SCs given (in Column 1), Tailor enables
S-2Obj to run scalably on the tailored programs obtained for five SCs, Eclipse-1, Tomcat-1,
Tomcat-2, JBoss-1 and JBoss-2 (in 6 – 62 minutes) with significant precision improvements
in terms of the number of reflective targets reduced. Without Tailor, no existing reflection
analyses [28, 29, 31, 45] can achieve such precise results automatically for their corresponding
reflective calls. Note that traditional slicing [21] is unscalable given the last points in the nine
SCs (out of (64GB) memory after 2 hours each) while thin slicing [47] (designed for program
debugging and understanding only) is unsound and is thus non-applicable in this setting.

S-2Obj remains unscalable for four SCs, Eclipse-2, Eclipse-3, Eclipse-4 and Tomcat-3,

ECOOP 2016

XX:20 Program Tailoring: Slicing by Sequential Criteria

partly because S-2Obj is precise but slow (being basically 2-object-sensitive [24]) and partly
because reflection-rich object-oriented programs such as Eclipse and Tomcat are difficult to
analyze both precisely and scalably, despite recent advances [28,29,45]. Tailor produces
the tailored programs for the nine SCs in less than 11 minutes each (Column 5), making it
possible for the five out of nine SCs to be analyze precisely than before (Columns 7 – 11).

Table 2 A case study demonstrating how Tailor enables a sophisticated pointer analysis to
scale better by analyzing the reflective behavior at the specific parts of a program.

SC
Efficiency (Analysis Times) Precision (Reflective Targets Resolved)

Number of Targets Resolved Precision Improved
Before Tailor Tailor After Tailor Before Tailor After Tailor Over

1-Call S-2Type S-2Obj S-2Obj 1-Call S-2Type S-2Obj 1-Call S-2Type
Eclipse-1

43m45s 129m39s >10h

3m1s 37m25s 109 27 12 88.9%↑ 55.6%↑
Eclipse-2 6m20s >10h 109 28 — — —
Eclipse-3 2m29s >10h 115 33 — — —
Eclipse-4 4m7s >10h 109 28 — — —
Tomcat-1

42m0s 80m35s >10h
4m11s 61m9s 303 116 1 99.7%↑ 99.1%↑

Tomcat-2 3m49s 61m24s 278 1 0 100%↑ 100%↑
Tomcat-3 3m42s >10h 277 41 — — —
JBoss-1 >10h 171m38s >10h 10m59s 6m14s N/A 67 4 N/A 94%↑
JBoss-2 4m19s 6m12s N/A 66 1 N/A 98.5%↑

Let us examine the SC denoted by Tomcat-1. Under 1-Call, Solar identifies an
imprecisely resolved newInstance() call (at line 268 in class Bootstrap) with 303 targets.
For this call, Solar reports four related Class.forName() and loadClass() calls, at lines
1232, 1265, 1299 in class WebappClassLoaderBase and line 265 in class Bootstrap, forming
a four-sequence SC (of length 2 each). When analyzing Tomcat as a whole, S-2Obj does not
terminate in 10 hours. Given Tomcat-1, Tailor produces a tailored program, T (Tomcat-1),
in about 4 minutes. Given T (Tomcat-1), S-2Obj finishes in about 61 minutes, enabling
Solar to resolve the newInstance() call (line 268) precisely to be class Catalina as its target.

We have inspected manually the five SCs scalably analyzed and found that no true
reflective targets are missed for the call sites at their last points. For Tomcat-2, Column 9
has a 0, because its last point, the newInstance() call (at line 595 in class RewriteValue),
reported by 1-Call is not reachable (from main()) and thus filtered out by S-2Obj.

6.3 RQ3: Scalability
Tailor has two main components, SCEXT and SCDFA, with the latter dominating the total
analysis time. We perform a stress test to investigate how well SCDFA scales, in practice.
For each of our seven applications listed in Table 1, we select randomly 50 statements as the
potential points of interest, then apply SCEXT to these points, and finally, run SCDFA on
the 50 extended SCs. For a total of seven applications, a total of 350 SCs are generated.

Figure 12 gives the final results. According to Figure 12a, SCDFA is scalable for 296
(85%) out of the 350 SCs generated (with a 10-minute budget per SC). Figures 12b – 12h
provide more details. For each application, we give the number of scalable SCs, and for
each scalable SC, its length (in the x-axis), its analysis time (in the left y-axis) and the
maximum number of data-flow facts (suffixes) reaching ENTRY, i.e., |PANTIout(ENTRY)| (in
the right y-axis). In the legend for each SC, there is a green dot representing its analysis
time and a red dot representing its |PANTIout(ENTRY)|. The data plotted for a fixed SC
length can be understood as follows. First, if there are n SCs with the same analysis time
(|PANTIout(ENTRY)|), then its green (red) dot is n times as large as the green (red) dot
in the legend. Second, the analysis time of a SC always increases as |PANTIout(ENTRY)|
increases (allowing one to find its associated red dot given a green dot). This is expected

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:21

100% 100% 100% 98%
92%

80%

22%

85%

ANTLR PMD JBoss FOP Eclipse Tomcat Avrora Avg.

Scalable Unscalable

(a) Scalability

0

10

20

30

65

165

265

365

4 5 6 7 8 9 10 11

#Facts

Time #Facts
Scalable SCs/All : 46/50

SC Length

Time (Sec)

(b) Eclipse

0

2

4

6

8

10

12

14

35

85

135

185

0 1 2 3 4

#Facts

Time #Facts

SC Length

Scalable SCs/All : 50/50

Time (Sec)

(c) PMD

0

1

2

3

4

40

50

60

70

0 1 2

#Facts

Time #Facts
Scalable SCs/All : 50/50

SC Length

Time (Sec)

(d) JBoss

0

5

10

15

40

90

140

190

240

290

0 1 2 3 4 5

#Facts

Time #Facts
Scalable SCs/All : 49/50

SC Length

Time (Sec)

(e) FOP

1

2

3

4

25

35

45

55

65

1 2 3

#Facts

Time #Facts
Scalable SCs/All : 50/50

SC Length

Time (Sec)

(f) ANTLR

0

1

2

3

4

5

40

60

80

100

120

140

0 1 2 3 4 5

#Facts

Time #Facts

Scalable SCs/All : 40/50

SC Length

Time (Sec)

(g) Tomcat

0

10

20

30

10

110

210

310

0 2 4 6 8 10

#Facts

Time #Facts

Scalable SCs/All :

11/50

SC Length

Time (Sec)

(h) Avrora

Figure 12 Scalability of SCDFA on 50 randomly generated SCs per program (with a 10-minute
budget per SC). “#Facts” represents the number of data-flow facts in PANTIout(ENTRY).

as the time complexity of SCDFA is O(ED3), where D is the size of the data-flow facts
used, i.e., |PANTIout(ENTRY)|. In general, |PANTIout(ENTRY)| increases as the length of its
underlying SC increases. However, this is not absolute, as the length of a SC is defined to be
the length of its longest sequence (with the other shorter sequences ignored).

Finally, we explain why SCDFA is unscalable for many SCs in Tomcat and Avrora and
discuss some possible solutions. For Tomcat, SCDFA is unscalable for 10 SCs, because many
of their extension points introduced by SCEXT could have been avoided if a more precise
pointer analysis (than Soot’s Spark pointer analysis) is used.

For Avrora, SCDFA is unscalable for 39 SCs, due to a special programming pattern used
in this (simulator) application. One factory class cck.util.ClassMap is used to create all its
simulation and platform classes, e.g., SensorSimulation, residing in a total of 13 packages.
As a result, most of the SC extension points introduced by SCEXT happen to land in this
factory class. In addition, there are many object allocation sites for this class in the program,
making all of them eligible as SC extension points and consequently increasing the number of
data-flow facts used, i.e., |PANTIout(ENTRY)|. One possible improvement is to make SCEXT
pattern-aware to avoid some SC extensions that would otherwise be introduced.

6.4 Limitations
We observe that program tailoring scales better than program slicing, as the overall design
of tailoring (with its object-sensitive conceptualization of SCEXT and its IFDS formulation
of SCDFA laid out in Sections 1.1 and 1.2) is more amenable to efficient implementation with
useful precision, as validated with our prototyping system, Tailor. However, there are still
spaces for performance improvement. According to our experimental results presented in
Section 6.3, a more intelligent SCEXT is needed to deal with programs such as Avrora more
effectively. Applying a pattern-aware pre-analysis to recognize some unscalability-inducing
SC extension points may be a viable solution worth trying in future work.

Tailor is practically useful in program debugging and understanding as well as program
analysis, as demonstrated with two case studies. However, Tailor is expected to be more
effective if we can avoid introducing irrelevant statements in loops. As explained in Section 4.2,
SCEXT presently gives up a SC extension point inside a control-flow cycle but may miss
an opportunity for avoiding infeasible paths at this point, with a tradeoff made favoring

ECOOP 2016

XX:22 Program Tailoring: Slicing by Sequential Criteria

scalability over precision. One possible improvement is to leverage slicing to remove irrelevant
statements that do not produce any data dependence for the statements in a SC. How to
combine tailoring and slicing scalably is non-trivial but will be an interesting future work.

7 Related Work

In addition to the related work mentioned earlier, we review some other related research.

Program Slicing There are dozens of slicing techniques proposed, including amorphous
slicing [19], parametric slicing [15], interface slicing [6] and specification slicing [4]. However,
none of these is close to program tailoring, as tailoring is the first to exploit a sequential
criterion and designed to scale for today’s large object-oriented programs. For past slicing
techniques and their design goals, we refer to some survey articles [8, 20,43,49]. Below we
examine the most closely related ones, by focusing on their connections with this work.

Traditional slicing [53] and thin slicing [47] have been introduced and compared in Section 2
and evaluated in Section 6. In general, most existing static slicing methods [20, 43, 49] make
use of the traditional slicing criterion (defined in [53] and used in Section 2) to express
their points of interest but may slice a program differently according to different goals. For
example, thin slicing [47] considers only producer statements that may have direct effects at
a point. Although unsound, thin slicing may exclude many distracting statements, easing
significantly program debugging and understanding (which is its goal aimed for).

Program tailoring focuses on a totally different criterion, known as sequential criterion,
which captures the temporal order of invocation sequences of related methods naturally
inherent in a program. As explained in Section 2 and demonstrated in Section 6, such
ordering information enables tailoring to improve the effectiveness of a modern thin slicing
tool, and potentially other slicing tools, e.g., a recently proposed value slicer [26].

Path slicing [23] takes as input a program path (or trace) to a target point and tries to
eliminate the statements that are irrelevant towards the reachability of the point. Given a
SC P lying on a path with P as a target point, path slicing may remove all points in SC P

except P as long as they do not affect the reachability, i.e., feasibility of the path to P (from
main()). In contrast, program tailoring focuses on determining the reachability of statements
towards a SC so that the temporal order specified in the sequences in SC is respected.

Program chopping [22,39] considers two sets of variables, one at a source point and one at
a sink point, as its slicing criterion. It identifies the statements that transmit the effects from
the source to the sink, by applying a forward slicing at the source and a backward slicing
at the sink. Tailoring is different in three aspects. First, chopping focuses on two points
but tailoring focuses on the temporal order specified by a sequential criterion consisting of
possibly many statement sequences of arbitrary lengths (sinking at the same point). Second,
chopping, which relies on traditional slicing, does not scale to large object-oriented programs.
Finally, SCEXT is unique as it enables tailoring to work effectively, in practice. In fact, these
differences are also what distinguish tailoring from other slicing techniques [8, 20,43,49].

API Protocol Analysis We consider typestate analysis [9, 16, 34] as a special kind of
API protocol analysis as the abstract states of an object are usually affected by API
calls. API protocol analysis [7, 37] reports related invocation sequences of API methods,
indicating a kind of semantic (or ordering) information in the program, which is ignored
by program slicing. Such API invocation sequences can be specified manually or mined
automatically [1, 3, 17,36,42,60]. SCEXT can be seen as a new method for mining protocols
in object-oriented programs automatically, but at a coarser granularity, based on the object-

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:23

sensitive calling contexts of a method. We expect Tailor to become more effective when
longer sequences (with richer semantic information) are considered as SCs.
Pointer Analysis SCEXT exploits the concept of object-sensitivity [33] to extend SCs in
order to avoid infeasible paths that would otherwise be introduced by SCDFA. We refer
to [44] on why object-sensitivity is more effective than call-site-sensitivity in representing
calling contexts when analyzing object-oriented programs context-sensitively. Over the years,
many whole-program pointer analyses for Java have been developed [24, 27, 44, 54, 55]. In
Section 6.2, we show how Tailor enables a precise whole-program pointer analysis [24] to
scale better on a SC -relevant part of the program in order to analyze the reflection behavior
at a program point affected by SC precisely. In principle, the reflective behavior at a program
point can also be answered by raising points-to queries on-demand instead. In practice,
however, existing demand-driven pointer analyses for Java [32, 40, 41, 46, 58] either ignore
hard language features such as reflection and dynamic class loading or assume that they
have been handled by a pre-analysis (e.g., when GICFG is built). In fact, how to analyze
such hard language features is a big challenge in its own right [30], despite recent advances
on static handling of reflection and dynamic class loading [5, 28,29,31,35, 45,56,57]. In this
setting, we are not aware of any SC-aware demand-driven pointer analysis, not to mention
its scalability to large object-oriented programs flow- and context-sensitively.

8 Conclusions and Future Work
This paper brings a new dimension to program slicing by introducing a sequential criterion.
The temporal ordering constraints that appear in a sequential criterion, which can be,
e.g., one or several sequences of API usage calls leading to a program point, are naturally
inherent in many real-world applications, but have not been exploited in program slicing
before. Accordingly, we propose program tailoring, a new technique to trim a program by
a sequential criterion soundly (with respect to a given ICFG) and scalably (for reasonably
large object-oriented programs). Regarding this new research work — program tailoring,
in theory, we have formalized it, proved its soundness (with respect to a given ICFG), and
discussed its advantages and limitations. In practice, we have produced a soon-to-be released
open-source implementation, Tailor, and demonstrated its usefulness for improving the
effectiveness of existing slicing techniques in program debugging and understanding and for
supporting program analysis with large Java programs due to its good scalability.

Program tailoring builds on a natural connection with several research fields: program
slicing, API protocol (or specification) mining, and program analysis. Therefore, a lot of
interesting future work is anticipated to investigate their interplay. One possibility is to
combine tailoring and slicing to eliminate irrelevant statements that cannot be eliminated
by either alone scalably for a given task. Another is to combine API protocol analysis with
SC extension to enable the latter to exploit richer semantic information available. Finally,
program tailoring also provides new opportunities for developing program analyses (e.g.,
pointer analysis) that are focused and partial, paying closer attention to specific parts of the
program, where some hard language features need to be analyzed precisely and scalably.

Acknowledgements. The authors wish to thank the anonymous reviewers for their valuable
comments. This work is supported by ARC grants, DP130101970 and DP150102109.

References
1 Mithun Acharya, Tao Xie, Jian Pei, and Jun Xu. Mining API patterns as partial orders

from source code: From usage scenarios to specifications. FSE ’07.

ECOOP 2016

XX:24 Program Tailoring: Slicing by Sequential Criteria

2 Stephen Adams, Thomas Ball, Manuvir Das, Sorin Lerner, Sriram K. Rajamani, Mark
Seigle, and Westley Weimer. Speeding up dataflow analysis using flow-insensitive pointer
analysis. SAS ’02.

3 Glenn Ammons, Rastislav Bodík, and James R. Larus. Mining specifications. POPL ’02.
4 Min Aung, Susan Horwitz, Rich Joiner, and Thomas Reps. Specialization slicing. ACM

Trans. Program. Lang. Syst., 2014.
5 Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo d’Amorim,

and Michael D. Ernst. Static analysis of implicit control flow: Resolving Java reflection
and android intents. ASE ’15.

6 Jon Beck and David Eichmann. Program and interface slicing for reverse engineering. ICSE
’93.

7 Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. Practical API protocol checking
with access permissions. ECOOP ’09.

8 David Binkley and Mark Harman. A survey of empirical results on program slicing. Ad-
vances in Computers., 2004.

9 Eric Bodden. Efficient hybrid typestate analysis by determining continuation-equivalent
states. ICSE ’10.

10 Eric Bodden. Inter-procedural data-flow analysis with IFDS/IDE and Soot. SOAP ’12.
11 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflec-

tion: Aiding static analysis in the presence of reflection and custom class loaders. ICSE ’11.
12 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophistic-

ated points-to analyses. OOPSLA ’09.
13 Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program verification in

polynomial time. PLDI ’02.
14 DOOP. http://doop.program-analysis.org.
15 John Field, G. Ramalingam, and Frank Tip. Parametric program slicing. POPL ’95.
16 Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. Effective

typestate verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol., 2008.
17 Mark Gabel and Zhendong Su. Javert: Fully automatic mining of general temporal prop-

erties from dynamic traces. FSE ’08.
18 GrammaTech. GrammaTech static analysis. http://www.grammatech.com.
19 Mark Harman and Sebastian Danicic. Amorphous program slicing. IWPC ’97.
20 Mark Harman and Rob Hierons. An overview of program slicing. Software Focus., 2001.
21 Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using dependence

graphs. ACM Trans. Program. Lang. Syst., 1990.
22 Daniel Jackson and Eugene J. Rollins. A new model of program dependences for reverse

engineering. SIGSOFT ’94.
23 Ranjit Jhala and Rupak Majumdar. Path slicing. PLDI ’05.
24 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis.

PLDI ’13.
25 Andrew J. Ko and Brad A. Myers. Extracting and answering why and why not questions

about Java program output. ACM Trans. Softw. Eng. Methodol., 2010.
26 Shrawan Kumar, Amitabha Sanyal, and Uday P. Khedker. Value slice: A new slicing

concept for scalable property checking. TACAS ’15.
27 Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using Spark. CC ’03.
28 Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. Self-inferencing reflection resolution for

Java. ECOOP’ 14.
29 Yue Li, Tian Tan, and Jingling Xue. Effective soundness-guided reflection analysis. SAS’15.
30 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J. Nelson Am-

aral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker, Anders Møller, and Di-
mitrios Vardoulakis. In defense of soundiness: A manifesto. CACM, 2015.

http://doop.program-analysis.org
http://www.grammatech.com

Y. Li, T. Tan, Y. Zhang, and J. Xue XX:25

31 Benjamin Livshits, John Whaley, and Monica Lam. Reflection analysis for Java. APLAS’05.
32 Yi Lu, Lei Shang, Xinwei Xie, and Jingling Xue. An incremental points-to analysis with

CFL-reachability. CC ’13.
33 Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sensitivity

for points-to analysis for Java. ACM Trans. Softw. Eng. Methodol., 2005.
34 Nomair A. Naeem and Ondřej Lhoták. Typestate-like analysis of multiple interacting

objects. OOPSLA ’08.
35 Phung Hua Nguyen and Jingling Xue. Interprocedural side-effect analysis and optimisation

in the presence of dynamic class loading. ACSC ’05.
36 Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and Tien N.

Nguyen. Graph-based mining of multiple object usage patterns. FSE ’09.
37 Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. Statically checking

API protocol conformance with mined multi-object specifications. ICSE ’12.
38 Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis

via graph reachability. POPL ’95.
39 Thomas Reps and Genevieve Rosay. Precise interprocedural chopping. SIGSOFT ’95.
40 Lei Shang, Yi Lu, and Jingling Xue. Fast and precise points-to analysis with incremental

CFL-reachability summarisation. ASE ’12.
41 Lei Shang, Xinwei Xie, and Jingling Xue. On-demand dynamic summary-based points-to

analysis. CGO ’12.
42 Sharon Shoham, Eran Yahav, Stephen Fink, and Marco Pistoia. Static specification mining

using automata-based abstractions. ISSTA ’07.
43 Josep Silva. A vocabulary of program slicing-based techniques. ACM Comput. Surv., 2012.
44 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:

understanding object-sensitivity. POPL ’11.
45 Yannis Smaragdakis, George Kastrinis, George Balatsouras, and Martin Bravenboer. More

sound static handling of Java reflection. APLAS ’15.
46 Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-to analysis

for Java. PLDI ’06.
47 Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin slicing. PLDI ’07.
48 Robert Tarjan. Depth first search and linear graph algorithms. SICOMP, 1972.
49 Frank Tip. A survey of program slicing techniques. J Program Lang, 1995.
50 Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman. TAJ:

Effective taint analysis of web applications. PLDI ’09.
51 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay

Sundaresan. Soot - a Java bytecode optimization framework. CASCON ’99.
52 WALA. T.J. Watson libraries for analysis. http://wala.sf.net.
53 Mark Weiser. Program slicing. ICSE ’81.
54 John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias analysis

using binary decision diagrams. PLDI ’04.
55 Xiao Xiao and Charles Zhang. Geometric encoding: Forging the high performance context

sensitive points-to analysis for Java. ISSTA ’11.
56 Jingling Xue and Phung Hua Nguyen. Completeness analysis for incomplete object-oriented

programs. CC ’05.
57 Jingling Xue, Phung Hua Nguyen, and John Potter. Interprocedural side-effect analysis for

incomplete object-oriented software modules. Journal of Systems and Software, 2007.
58 Dacong Yan, Guoqing Xu, and Atanas Rountev. Demand-driven context-sensitive alias

analysis for java. ISSTA ’11.
59 Sai Zhang and Michael D. Ernst. Which configuration option should I change? ICSE ’14.
60 Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Mining and recommending

API usage patterns. ECOOP ’09.

ECOOP 2016

http://wala.sf.net

	Introduction
	Goals and Motivations
	Challenges and Solutions
	Contributions

	A Motivating Example
	Methodology
	SC-Based Data-Flow Analysis
	SC Extension

	Formalism
	SC-based Data-Flow Analysis
	SC Extension
	Properties

	Implementation
	Evaluation
	RQ1: Program Debugging and Understanding
	RQ2: Program Analysis
	RQ3: Scalability
	Limitations

	Related Work
	Conclusions and Future Work

