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Abstract

Almost every computer user has encountered an un-
responsive system failure or system hang, which leaves
the user no choice but to power off the computer. In
this paper, the causes of such failures are analyzed in
detail and one empirical hypothesis for detecting sys-
tem hang is proposed. This hypothesis exploits a small
set of system performance metrics provided by the OS
itself, thereby avoiding modifying the OS kernel and
introducing additional cost (e.g., hardware modules).
Under this hypothesis, we propose SHFH, a self-
healing framework to handle system hang, which can
be deployed on OS dynamically. One unique feature
of SHFH is that its “light-heavy” detection strategy
is designed to make intelligent tradeoffs between the
performance overhead and the false positive rate
induced by system hang detection. Another feature
is that its diagnosis-based recovery strategy offers
a better granularity to recover from system hang.
Our experimental results show that SHFH can cover
95.34% of system hang scenarios, with a false positive
rate of 0.58% and 0.6% performance overhead, val-
idating the effectiveness of our empirical hypothesis.

Keywords-System Hang, Operating System, Self-
Healing Framework, Fault Detection and Recovery

1. Introduction

Almost every computer user has encountered such a
scenario in which all windows displayed on a com-
puter monitor become static and the whole computer
system ceases to respond to user input. Sometimes
even the mouse cursor does not move either. “Unre-
sponsiveness”, “freeze” and “hang” have been used
to describe such a phenomenon, with “hang” being
the most popular [1]–[4], [6], [7], [9], [12]. Note
that a single program unresponsive failure (i.e., one
application failing to respond to user input) is regarded
as application hang, which is not the focus in this
paper. Unlike the other failures (e.g., invalid opcode
and general protection fault) whose causes can be de-
tected directly by hardware [13], system hang cannot
usually be detected by hardware or even perceived

by operating system (OS) (except for some severe
cases detected only partially by watchdog mechanisms
provided by some modern OSes). This leaves the user
no choice but to power the system off. As a result,
the OS fails to provide continuous services, causing
the user to lose some valuable data. Worse still, if the
computer system is deployed in some mission-critical
applications, e.g., nuclear reactors, system hang may
lead to devastating consequences.

By observing existing studies dealing with system
hang, we draw two conclusions. First, most studies,
although being effective in certain cases, could only
address certain system hang scenarios [1]–[5]. One
main explanation to this is that it is difficult to analyze
the causes of system hang, and accordingly, each study
focuses on its own assumptions about the causes of
system hang. As a result, it is necessary to study the
causes of system hang more comprehensively.

Second, most methodologies for detecting system
hang need additional assistance, provided by either
new hardware modules [7], modified OS kernels [1],
[5], or monitor breakpoints inserted dynamically for
interested code regions [4]. Can we rely on the exist-
ing services provided by the OS to detect system hang
effectively? An attempt made in [2] does this by just
monitoring I/O throughput, but it fails if a hang occurs
within some OS code not related to I/O. The work
of [8] is developed on the assumption that statistical
models of processes, for such metrics as CPU and
memory utilization, may reveal the slowness of the
system (similar to system hang). However, since the
causal relationship between the statistical models for
processes and the slowness for the system has not
been validated, the effectiveness of this assumption
remains unclear. As a result, whether or not existing
OS services can be utilized to detect system hang
becomes an attractive argument, since an affirmative
answer implies that no additional cost will be incurred.

The main contributions of this paper are as follows.
We give a new characterization of system hang based
on the two popular views about it (as described in
Section 2.1). Besides, the causes of system hang
are analyzed in detail from two aspects: indefinite
wait for system resources (resources not released or
released slowly) and infinite loop under interrupt and



preemption constraints. Accordingly, we present six
types of faults responsible for system hang.

We propose a self-healing framework to handle
system hang automatically and refer to it as SHFH,
which can be deployed on OS (currently implemented
on Linux) dynamically. One unique feature is that a
“light-heavy” detection strategy is adopted to make in-
telligent tradeoffs between the performance overhead
and the false positive rate induced by system hang
detection. Another feature lies in its diagnosis-based
recovery strategy, which is designed to provide a better
granularity for system hang recovery.

We have selected UnixBench [22] as our benchmark
suite, and injected six types of faults into UnixBench
to cause system hang among 9 bench workloads
representing at least 95% of kernel usage [26]. By
analyzing a total of 68 performance metrics (e.g.,
context switches per second and number of runnable
tasks) which are provided by the OS itself from 1080
experiments under normal and anomalous workloads,
and after further experimental validation by using both
UnixBench and LTP (Linux Test Project) [21], we find
that 9 common performance metrics are sufficient as
the basis to detect most system hang problems without
requiring any additional assistance (e.g., new hardware
modules or kernel modification).

The rest of this paper is organized as follows.
Section 2 describes what system hang is and what
causes it. Section 3 discusses whether empirical sys-
tem performance metrics can be utilized to detect
system hang. According to the hypothesis presented in
Section 3, SHFH is proposed and described in detail in
Section 4. Section 5 evaluates our SHFH and validates
accordingly the effectiveness of the hypothesis made
in Section 3. Section 6 discusses the related work and
Section 7 concludes the paper.

2. System Hang and Causes

There is no standard definition of system hang. In
Section 2.1, we give a new characterization of system
hang as our analysis foundation according to the two
existing views about it. The causes of system hang are
analyzed in detail in Section 2.2.

2.1. What is System Hang

There are two popular views. Studies [1], [3], [5], [7]
describe system hang as that OS does not relinquish
the processor, and does not schedule any process,
i.e., the system is in a totally hang state which does
not allow other tasks to execute and respond to any
user input. On the other side, studies [2], [4], [8],
[9], [11] consider that when OS gets partially or
completely stalled, and does not respond to user-space
applications, the system enters a state of hang.

We prefer the second view about system hang
because it includes a broader scope of hang scenar-
ios which is in accordance with our daily human-
computer interaction experience, and based on which,

a new characterization of system hang is given below.
System hangis a fuzzy concept which depends on

the criteria of the observer - the system gets partially
or completely stalled, and most services become un-
responsive, or respond to user inputs with an obvious
latency (an unacceptable length of time according to
the observer).

2.2. Causes of System Hang

Tasks need to run effectively to provide services.
In other words, if tasks cannot run, or run without
doing useful work, users would be aware of the un-
available services (unresponsive). Accordingly, what
causes tasks to be unavailable to run (i.e., tasks to
wait for resources that will never be released) or to
do useless work (i.e., tasks to fall into an infinite loop)
contributes to system hang. It should be noticed that
although a task falls into an infinite loop, it can be
interrupted or preempted by other tasks. Besides, some
system hangs can be automatically recovered after a
period of time since the resources which are held by
other tasks are released slowly. In this situation, if
users have no patience to wait for a long time (until
resources are released), system hang is considered
happening.

Consequently, we analyze the causes of system
hang from two aspects: infinite loop under interrupt
and preemption constraints and indefinite wait for
system resources (resources not released or released
slowly). Accordingly, six types of faults are distin-
guished as shown in Figure 1.

2.2.1. Infinite Loop

When interrupts are disabled (F1), even a clock inter-
rupt cannot be responded. As a result, if the running
task does not relinquish the CPU on its own, i.e., falls
into an infinite loop, other tasks would have no chance
to be executed. In the case with interrupts enabled but
preemption disabled (F3), CPU can respond to inter-
rupts; however, even tasks with higher priority cannot
be executed, thus making some services provided by
the ready tasks unavailable. Although both interrupts
and preemption are enabled, when a task falls into an
infinite loop in kernel (F2) (certain OSes, e.g., Linux
after 2.6 version, support kernel preemption mecha-
nism), it still cannot be preempted unless all the locks
held by the task are released or the task is blocked
or explicitly calls schedule function; however, falling
into an infinite loop in kernel offers little chances
to satisfy the above conditions, thus providing OS
little opportunities to schedule other tasks. Generally,
infinite loops can be explained in two scenarios: (1)
an interrupt (preemption) enabled operation cannot be
executed due to an infinite loop formed earlier and (2)
an interrupt (preemption) disabled/enabled pair falls
inside an infinite loop. Faults related to spinlocks, e.g.,
double spinlocks, are also categorized into F1 (the first
scenario) due to its mechanism of busy waiting for
locks after interrupts are disabled. Even in a multi-



System Hang


Infinite loop


Interrupt disabledF1

Interrupt enabled

Preemption enabled(loop in kernel)F2

Preemption disabledF3

Indefinite wait


Resources not released Deadlock(except spinlock)F4

Resources released slowly


Sleeping while holding locksF5

Abnormal resource consumptionF6

Holding resources too long during correct operations

Figure 1. Categories of system hang causes ( F:Fault in abbreviation )

core computer, the stall of only one core can cause
the freeze of the whole system for certain reasons,
e.g., the synchronization mechanism between different
cores. Indeed, this phenomenon does occur frequently
in our experiments.

2.2.2. Indefinite Wait

Awaiting resources (e.g., signals, semaphores, I/O,
interrupts or memory spaces) indefinitely can be ex-
plained as waiting for the resources requested either
infinitely or for a long time (depends on the patience
of users). The deadlock described in F4 does not
include the circumstance triggered by spinlocks even
if double spinlocks (it belongs to F1) is also a kind
of deadlock. If tasks or a piece of kernel codes,
which have several interactions with other tasks, are
trapped by deadlock, system hang may occur due to
the sudden loss of the key internal services. In general,
sudden disappearance of resources (e.g., peripheral
devices, pipe) also belongs to F4. OS provides no
mechanism to ensure that a task holding spinlock
would not fall into a sleep state. As a result, F5 may
cause system hang because tasks that wait for the
spinlocks to be released have to run on CPU in a busy
waiting way, thus providing no chance to schedule
other tasks. F6 is usually relevant to anomalous mem-
ory consumption, since there are not enough memory
space immediately provided to the new forked tasks
or the ones swapped in again. The classical malicious
program “fork bomb” (fork infinitely) also belongs to
F6. Holding resources for a long time during correct
operations, e.g., copying many files simultaneously to
peripheral devices, may cause temporal system hang.
However, this situation is not considered as a cause of
system hang, since it is a correct operation and varies
with different system configurations. It should be
noticed that although F5 and F6 may release resources
after a while (e.g., the task holding spinlock is waked
up and executes an unlock operation), F5 and F6 are
considered as the causes of system hang because they
occur due to inappropriate operations.

3. Empirical Detection Metrics

The difficulty in handling system hang lies in how
to detect it, since OS offers no mechanisms to make
itself informed when it enters a hang state. Most
studies (as described in Section 1) detect system hang

through additional assistances (e.g., hardware mod-
ules or kernel modification), this section investigates
whether exploiting the services provided by the OS
itself can help detect system hang. In Section 3.1, we
first introduce a hypothesis about empirical metrics
used for system hang detection. According to this
hypothesis, the research questions about detection
metrics are proposed in Section 3.2. In Section 3.3,
we conduct experiments to determine which metrics
should be selected to detect system hang. Finally, we
discuss how to use the selected performance metrics
to detect system hang.

3.1. Hypothesis of Detection Metrics

We choose system performance metrics (e.g., context
switches per second and number of runnable tasks)
as the targets of detection because they are usually
provided by most OSes and implicate the overall per-
formance information when the system slows down.
Our detection metrics are hypothesized as follows:

Hypothesis: Combined with a theoretical analysis,
partial system performance metrics can be regarded as
a sufficient basis to determine whether system hang
occurs.

3.2. Research Questions

Since system performance metrics are uncontrollable,
it is impossible to build a mapping from performance
metrics to a hang state. As a result, the other way,
i.e., observing the values of performance metrics when
the system enters a hang state, can be attempted to
help understand which metrics may implicate system
hang. It should be noticed that, in this situation, the
influenced performance metrics are necessary rather
than sufficient to detect system hang.

As a result, whether the selected metrics are also
sufficient or not needs to be validated (empirically in
Section 5). According to the hypothesis (Section 3.1)
and the analysis above, we seek to answer the follow-
ing research questions:

RQ1 Among hundreds of system performance
metrics provided by OS, which ones should
be selected?

RQ2 How to determine system hang with the
system performance metrics?

Sections 3.3 and 3.4 answer the two research



questions respectively.

3.3. Which Performance Metrics to Select

In this section, we investigate experimentally which
metrics to select to detect system hang by observing
if a metric changes abnormally under hang scenario.
First, we describe our experimental setup. Then, we
use an example to show how these experiments work.
Finally, the system performance metrics which have
potential to detect system hang are selected according
to our experimental results.

3.3.1. Experiment Setup

The six types of faults (see Section 2) that cause sys-
tem hang are considered as the injected faults, which
are implemented as errant kernel modules and loaded
dynamically under different workloads. Accordingly,
the activation rate of injected faults to cause system
hang is 100%. We select 68 system performance met-
rics (e.g., number of tasks currently blocked and per-
centage of time spent by soft interrupt requests) as the
observation targets. To observe the general variations
of performance metrics under sufficient workloads, 9
programs (context1, dhry, fstime, hanoi, shell8, pipe,
spawn, syscall, and execl) in the benchmark suite
(UnixBench 5.1.2) are selected, which could represent
at least 95% of kernel usage [26]. Experiments are
performed on two computers. One with Intel Core
i5 650, 3.20GHz CPU (seen as 4 CPUs by OS) and
4GB RAM, and the other one with Intel Pentium 4,
3.20GHz CPU (seen as 2 CPUs by OS) and 512MB
RAM. We consider a Linux kernel (version 2.6.32)
as our experimental operating system. To guarantee
the generality of the experimental results, each type
of injected faults is loaded and executed under each
selected UnixBench workload 10 times in each com-
puter. Consequently, the total number of experiments
conducted is6× 9× 10× 2 = 1080.

3.3.2. An Example

We choose F5 and inject it in thepipe workload of
UnixBench running on the computer with Intel Core
i5 650, 3.20GHz CPU and 4GB RAM.

Although experienced programmers avoid using
semaphores after a spinlock to make an unlock oper-
ation executed quickly, they may ignore whether the
called functions after a spinlock have operations on
semaphores or sleep. As a result, tasks which wait
for the spinlock to be released (the task holding the
spinlock falls asleep due to thedown() operation on
semaphore or explicitly sleep operation, F5) have to
run on CPU in a busy waiting way, leaving no chance
for other tasks to run. We inject the sleeping kernel
module with a spinlock A at the 23rd second, and
inject the kernel modules which acquire A at the 39th,
51st and 59th seconds consecutively. As shown in
Figure 2-(a), 2-(b) and 2-(c), metricsys(percentage of
time spent by system call and exception) reaches and
holds 100%, and the value of metricusr (percentage of

time spent by application) is still zero after injecting
the respective kernel module. Finally, CPU0 cannot
execute the user program any more when the system
enters a hang state (see Figure 2-(d)). In addition, after
the 59th second, the number of context switches per
second (cs) (as shown in Figure 2-(e)) is small since
the other three CPUs are occupied by the injected
kernel codes. Although some metrics vary obviously
after the injection of the faults, e.g., the number of
runnable tasks under thepipeworkload (Figure 2-(f)),
they may not be selected as detection metrics, since
the value of influenced metrics may be normal in other
workloads (e.g., the number of runnable tasks for the
shell8workload as shown in Figure 2-(f)).

After injecting F5 into thepipe workload 10 times
and finishing the experiments of F5 in other 8 work-
loads of UnixBench, the general detection metrics
selected for F5 areusr, sysper CPU, andcs.

3.3.3. Experimental Conclusion

Similar to the methodology adopted by the above
example, other experiments are implemented, and the
experimental results are given in Table 1. Metric
iowait represents the percentage of time spent by I/O
wait. run means the number of tasks in the running
state andblk records the number of tasks currently
blocked. Metricpswpoutmeans the number of pages
swapped out per second andmemfreerecords the
unused space of memory.util means the percentage
of CPU time during which I/O requests were issued
to the device. The 9 system performance metrics in
Table 1 are considered as the metrics to detect system
hang. F1, F2 and F3 have the same detection metrics
since they all consume CPU inappropriately. F4 makes
the tasks sleep to wait for the services provided by
the tasks which are trapped in deadlock, thus it has
no influence on the CPU metrics. Because F5 makes
the tasks run on CPUs in a way of busy waiting, its
metrics are similar to the ones related to infinite loops.
As for F6, since it has relevance to consumption of
large resources, its detection metrics should be related
to memory and I/O.

Table 1. Performance metrics used to detect system hang

PPPPPPFault
Metrics CPU Process Memory disk I/O

sysusriowait runblk cspswpoutmemfree util
F1

√ √ √

F2
√ √

F3
√ √ √

F4
√ √

F5
√ √ √

F6
√ √ √ √ √ √

3.4. How to Determine System Hang

The values of several monitored metrics of system
under the normal execution are quite different from
those of a hang system. During normal execution,
each value of a monitored metric has an acceptable
range. The system is considered healthy when each
monitored metric is among its acceptable range. By



(a) CPU2 (b) CPU3

(c) CPU1 (d) CPU0

(e) Number of context switches per second (f) Number of current runnable tasks

Figure 2. Performance metrics records with F5 in pipe workload of UnixBench



comparing the values of metrics collected during the
normal and hang states, subject to a further theoretical
analysis, we can empirically set an acceptable range
for each monitored metric. When the values of one or
more metrics are out of their acceptable ranges, we
can consider that the system enters a hang state.

For example, after observing the statistics of exper-
imental results, we find that in some hang scenarios
sys is more than 95% for a long time (e.g., exceeds
one second) andusr is lower than 4%, which may
be caused by a task executing an infinite loop in
the kernel mode. However in the normal state,sys
can hardly reach 90% and last for more than one
second, because the time of system calls and exception
handling spending on CPU is usually very short. In
addition, since the system calls are invoked by user
applications,usr should not be lower than a certain
percentage.

Moreover, the influence of a specific hardware mod-
ule or operating system should also be considered to
improve the portability of the detection strategy of sys-
tem hang. Thus, an appropriate platform-independent
range for each monitored metric is preferred, e.g.,
some metrics can be evaluated in the form of per-
centage. In this case, the ranges of some metrics
can be initialized according to different hardware
and operating system configurations which can be
captured when the system starts to run on a specific
platform.

4. SHFH: Self-Healing Framework for
System Hang

In this section, we introduce SHFH (a self-healing
framework to handle system hang), which adopts
the methodology of utilizing the 9 empirical system
performance metrics (described in Section 3) to de-
tect system hang. To automate the whole process
of handling system hang, we introduce the idea of
self-healing for designing SHFH. A traditional self-
healing architecture includes detection, diagnosis and
recovery components [17]. Its diagnosis part is usu-
ally implemented into multiple diagnosis engines to
capture different failures, which is independent of the
detection part. SHFH makes system hang as a failure
target and only monitors the performance metrics that
may implicate system hang. Its diagnosis mechanism
is integrated into the detection component for helping
diagnosis-based recovery. This revision remarkably
decreases the performance overhead induced by the
self-healing framework and simplifies its structure.

4.1. Overview of SHFH

As shown in Figure 3, SHFH contains three core parts:
light detector, heavy detector and recovery component.

In SHFH, the light detector only monitors six
system performance metrics (see Section 4.2.1) pe-
riodically. When it finds that the values of metrics are

Figure 3. An overview of SHFH

abnormal (perhaps caused by system hang), it triggers
an alert to wake up the heavy detector. The heavy
detector gets further information by some expensive
operations (e.g., poll processes). Then the gathered
information is analyzed by the diagnosis part of the
heavy detector. If system hang is asserted to occur, the
related recovery operations (depending on different
diagnosis results), e.g., suspending the current task on
a particular CPU or restarting the system, would be
executed; otherwise, the alert triggered by the light
detector will be ignored by the heavy detector. One
unique feature of SHFH is that its “light-heavy” detec-
tion strategy is designed to make intelligent tradeoffs
between the performance overhead and the false pos-
itive rate induced by system hang detection. Because
the light detector is lightweight (a user application),
expensive operations for collecting further data to
detect a hang (to decrease false positives) are incurred
(by the heavy detector) only when the light detector
triggers an alert.

The light detector is a real time user process, and
in some scenarios, it may have no opportunity to be
executed due to certain faults (e.g., F1, F2, F3 and F5
described in Section 2). To overcome this problem,
a watchdog timer mechanism is introduced in SHFH.
The light detector periodically updates the value of the
timer in the heavy detector. If the timer is not updated
for consecutive periods of time, the services provided
by the light detector are regarded as unavailable. Then
the recovery operation is called since even the real
time application cannot run (there must be something
wrong with the system).

4.2. Implementation of SHFH

We have implemented SHFH in the Linux operating
system (kernel 2.6.32). The light detector of SHFH
is implemented as a real time process, and both
the heavy detector and recovery component are im-
plemented as loadable kernel modules. The whole
SHFH can be dynamically loaded and removed by
simple shell command. In this section, the detailed
detection and recovery strategies for system hang, and



the implementations of the light detector, the heavy
detector and the recovery component are described.

4.2.1. Light Detector

The light detector can be considered as the eyes of the
SHFH, and it is used to collect six system performance
metrics,sys, iowaitandusr on each CPU,run, csand
pswpout(as described in Section 3.3). According to
our formal study (see Section 3.4), system hang can be
revealed by the performance metrics. We define some
conditions under which an alert should be triggered
and at the same time an error code is generated
according to different anomalous metrics. The error
codes can help the heavy detector perform a further
check. The mapping between trigger conditions and
an error code is given in Table 2.

Table 2. Mapping model of light detector

Trigger condition Error code
sysexceeds its upper bound for

consecutive monitor interval and the CPU ERROR
usr does not reach its lower bound
iowait higher than its upper bound CPU ERROR

run surpasses its upper bound PROC ERROR
cs is lower than its lower bound PROC ERROR
pswpoutexceeds its upper bound MEM ERROR
for consecutive monitor interval

The light detector consists of two core functions:

• To obtain the performance metrics of the system,
we use thesar command to collect data period-
ically from the /proc file system which is pro-
vided by Linux. By establishing a pipe between
the light detector andsar, system performance
metrics are obtained dynamically.

• Once the light detector finds that some metrics
indicate an anomalous condition, it will trigger
an alert by sending a message which includes
the error code and metrics that are necessary for
the heavy detector to perform a further check.
Otherwise, it sends an empty message periodi-
cally to update the timer of the heavy detector
to indicate that the light detector is still working.
Sockets are used as the communication medium
between the light and heavy detectors.

The light detector acts as a filter of most metrics
measured in normal states, which can guarantee that
the heavy-cost operations are only executed when the
system is in an abnormal state.

4.2.2. Heavy Detector

Unlike the light detector which generates an alert
when the system is possibly in a hang state to increase
the coverage of hang detection, the heavy detector,
which acts as the brain of SHFH, should be able
to confirm whether the system is in a hang state
to decrease the false positive rate, and then choose
a proper recovery action according to different fault
causes which can be achieved by a diagnose progress.

The heavy detector can be triggered under one of
the two conditions: by receiving an alert message

from the light detector or a timeout signal from
the timer that is periodically updated by the light
detector. Once triggered, the heavy detector first takes
a diagnosis action to check the error code and some
extra performance metrics sent by the light detector to
confirm whether the system is in a hang state or not.
This is necessary because the monitored metrics may
also seem anomalous to the light detector under some
normal conditions (e.g., the system has a heavy load).
Although some performance metrics used to verify
system hang are the same as those the light detector,
some other metrics are added or the bounds of the
metrics are set differently when confirming system
hang. The mapping from an error code to metrics for
verifying system hang is given in Table 3. Because
a recovery strategy is chosen based on the type of
faults, the mapping rules from an error code (with
extra performance metrics which are sent by the light
detector) to the possible faults and recovery actions
are also given in Table 3.

Let us consider an example to see how the mapping
rules work. As shown in Table 3, when the error
code from the light detector is MEMERROR, the
heavy detector first checks the values ofblk andutil,
and when both exceed their upper bounds, it polls
all tasks to find the task consuming memory abnor-
mally. If this further diagnosis condition is satisfied,
F6 is considered as the cause of system hang, and
then according to the mapping rules in Table 3, the
operation which kills the task that consumes memory
abnormally is selected. Otherwise, the heavy detector
checks the next mapping rule of MEMERROR. If
no rules of MEM ERROR match, the heavy detector
will ignore the alert from the light detector.

4.2.3. Recovery

The recovery component of SHFH tries to help OS
recover from a hang state and provide continuous
services, or restart in some severe cases. Based on
different diagnosis results generated by the heavy
detector according to the mapping rules, different
recovery operations are taken (shown in Table 3). The
recovery component offers three types of recovery
actions: kill or stop the suspicious process/thread; send
an NMI (Non-Maskable Interrupt) to a particular CPU
to wake up the stalled CPU; panic the system and then
restart. The recovery component may have to restart
the OS when the hang scenario is caused by some pro-
cesses which are in the UNINTERRUPTIBLE state.

5. Evaluation

In order to evaluate SHFH and the effectiveness of
the hypothesis described in Section 3.1, we have
conducted our fault injection experiments.

5.1. Experiment Setup

The experiments are performed on a computer with
Intel Core i5 650, 3.20GHz CPU (seen as 4 CPUs



Table 3. Mapping model of Heavy Detector

Error code Further diagnosis2 Diagnosis result Recovery actions
CPU ERROR sys,usr F1,F2, Send NMI to stalled CPU and kill

F3,F5 the running task on the CPU
MEM ERROR util, blk and the memory used by each process F6 Kill the task consumes memory abnormally3

MEM ERROR iowait, pswpoutandmemfree F4,F6 Panic and restart
PROC ERROR continuous run time of each process F1,F3 Stop the task runs continuously for a long time3

PROC ERROR run andblk F6 Panic and restart

by the OS), 4GB of RAM, and a SATA 500GB hard
disk with 7200RPM under the Linux kernel 2.6.32.
The effectiveness of SHFH is evaluated from three
aspects: coverage of fault detection, false positive and
performance overhead. The experimental thresholds of
detection metrics are presented in Table 4. The rules
regarding how to use the thresholds of light and heavy
detectors are determined according to their mapping
models described in Table 2 and 3 respectively, with
the portability of the initial values considered.

Table 4. Experimental thresholds of light and heavy detectors

Light detector Heavy detector
Metric Threshold Metric Threshold

sys 50% sys 95%
usr 4% usr 1%

iowait 50% iowait 90%
run 3 * CPU NR run 10 * CPU NR
cs 350 blk 32

pswpout 3000 memfree 128MB
- - util 90%

In Table 4, metricsrun and cs have relevance to
the number of CPU cores (CPUNR) seen by OS,
and the value ofcs on each CPU core is about
90. In this experiment, we initializecs as 350 since
our experimental computer has 4 CPU cores. The
threshold ofmemfreedepends on the minimum space
of memory reserved by OS. The other initial values are
concluded from a theoretical analysis and experiments
run with sufficient workloads and different hardware
configurations (Sections 3.3 and 3.4). The monitor
period of the light detector is set up with one second,
which is the shortest monitor period ofsar with both
efficiency and effects being accounted for.

5.1.1. Workload

We have selected Unixbench (Version 5.1.2) and
Linux Test Project (LTP Version 2012-01-04) as real-
istic workloads to evaluate the effectiveness of SHFH.
A standard set in Unixbench (same as that in Sec-
tion 3.3.1) is chosen to generate a normal workload.
LTP is used to produce a heavier workload to verify
whether SHFH can still work well (considering the
false positive rate) under a pressure environment.

5.1.2. Fault Injection

According to the study on the causes of system hang
(Section 2), we edit script programs to automatically
and randomly inject six types of faults (implemented

2Metrics needed to further check to confirm system hang.
3By polling all processes to find the anomalous one.

as kernel modules) which can lead to system hang
into the OS with Unixbench (the 9 test suits as shown
in Section 3.3.1 respectively) and LTP running as
system overheads. Each type of faults is injected 75
times on Unixbench and LTP respectively to verify
whether SHFH can really detect the faults and recover
from a hang state. Moreover, some extra experiments
with no faults injected are conducted to evaluate the
performance overhead and false positive rate. A false
positive is considered to occur when SHFH confirms
a fault and takes recovery action during normal exe-
cution flow of Unixbench and LTP.

5.2. Experimental results

The results of fault injection experiments are shown in
Table 5. The number of alert and timeout (generated
by the light detector) is larger, while the number
of hangs detected (confirmed by the heavy detector)
is less than the number of faults injected (75) in
some experiments. This shows that in certain envi-
ronments, the light detector is influenced by the heavy
workloads; however, the heavy detector can determine
correctly if the system enters a hang state.

Table 5. Results of fault injection experiments

Fault Workload Alert/Timeout Hang detectedRecovery/Panic
(F1-6) (times) (times) (times)

F1 LTP 46/29 72 71/1
Unixbench 32/44 74 74/0

F2 LTP 75/0 72 72/0
Unixbench 75/0 74 74/0

F3 LTP 30/45 74 72/2
Unixbench 49/28 75 75/0

F4 LTP 355/0 65 0/65
Unixbench 280/0 61 0/61

F5 LTP 32/43 68 68/0
Unixbench 19/55 74 73/1

F6 LTP 104/1 74 71/3
Unixbench 105/0 75 75/0

As shown in Table 5, in the experiments in which
F4 is injected, panic and restart is used to recover in
all the cases. That is because when the heavy detector
detects the system hang caused by F4, the system has
already entered a state that CPU runs normally but
other resources (e.g., memory) are not enough, since
F4 is usually caused by the waiting tasks which cannot
get services provided by the kernel codes or tasks
trapped by deadlock. Under this circumstance, system
can only be restarted because the deadlock codes or
tasks are difficult to locate.

Although the action of panic and then restart (after
detecting system hang) is better than powering off the



system, we do not regard it as a successful recovery
action. We consider a recovery as successful if it
can preserve the operating system with the ability to
continue running and providing services after system
hang is detected. However, in the worst case, SHFH
cannot work due to the serious system hang scenarios
(e.g., all CPUs stalled simultaneously). As a result,
there are still 4.66% system hang scenarios on average
that cannot be recovered and even restarted by SHFH.
According to the coverage, false positive, recovery and
restart ratio provided by SHFH (shown in Table 6), the
effectiveness of the hypothesis proposed in Section 3.1
is empirically validated.

Table 6. Coverage, false positive, recovery and restart ratio

provided by SHFH

Work Detection False Recovery Panic and
load coverage positive ratio restart
LTP 94.45% 1.16% 78.67% 15.78%

Unixbench 96.22% 0% 82.44% 13.78%
average 95.34% 0.58% 80.56% 14.78%

The performance overhead is evaluated by the index
of system performance which can be captured from
Unixbench. By comparing the index result of running
a standard benchmark with and without SHFH, we
find that SHFH suffers from a performance over-
head of about 0.6%. Recall that our experiments are
conducted on a multi-core computer. When SHFH
is applied on a single-core computer, the detection
coverage and recovery ratio may decrease because the
recovery operations can not be taken when some types
of faults like F1 occur.

6. Related Work

We discuss the related work about the causes of and
detection and recovery methods for system hang.

The OS kernel falling into an infinite loop is seen
as the reason for system hang [1], [3], [5]; however,
that reason may not be appropriate when considering
the preemption mechanisms used. Incorrect usage of
synchronization primitives (in particular those related
to spinlocks in Linux) is regarded as the main causes
of system hang [2]. In addition, studies reported in
[4], [9] also take into account indefinite wait (for an
event that will never occur). However, its effectiveness
depends on the way it is waiting for an event (e.g.,
sleeping or busy waiting).

Several methods have been proposed to detect sys-
tem hang. The improved watchdog timer [5] needs
to be periodically reset under the normal situation;
otherwise the timer would expire and an NMI will
be triggered. However, this method cannot detect
an infinite loop when the process (responsible for
resetting the timer) does not get stuck. SHD (System
Hang Detector) [1] counts the number of instruction
executed between two consecutive context switches.
When OS does not schedule processes, the counter
value will increase and exceed the theoretical max-
imum value. This approach is only effective against

an infinite loop with both interrupt and preemption
disabled. Monitoring I/O throughput [2] is an effective
way to detect some system hang problems, however
it fails if a hang occurs within OS code not related
to I/O. The work of [4] monitors signals and wait-
ing/holding time for critical sections, task scheduling
timeouts, and so on. A total of eight variables for
a single process and monitors need to be deployed
through dynamic probing with the help ofKProbes
to place breakpoints into the kernel. If applying this
strategy into monitoring every process, it may get a
sound proof of system hang with low false positives;
however, the performance overhead is not optimistic.

Generally, when system hang is detected, restarting
the system is regarded as the default recovery action.
Study [5] keeps the OS running through killing the
current running process. However, when the suspi-
cious process is not the current one, e.g., a process
which is sleeping with a spinlock or a large block
of memory, the other processes needing the spinlock
or the memory space consume the CPU and memory
resources and eventually cause system hang. In this
case, killing the current process cannot handle system
hang. Our recovery strategy varies with the diagnosis
results of detection, e.g., killing the sleeping processes
(located by the light-heavy detection of SHFH) that
hold a large piece of memory which wait for a signal
that would never happen, rather than just killing the
current process or restarting the system.

7. Conclusion

In this paper, we give a new characterization of system
hang according to the two existing views about it,
and analyze the causes of system hang in detail
from two aspects: indefinite wait for system resources
(resources not released or released slowly) and infi-
nite loop under interrupt and preemption constraints.
Accordingly, six types of faults that may cause system
hang are described. To avoid additional cost incurred
by extra assistance (e.g., new hardware modules, ker-
nel modification or breakpoint insertions), we present
a hypothesis which only uses a small subset of the set
of system performance metrics to detect system hang.
Based on this hypothesis, we propose a self-healing
framework named SHFH, which can be deployed
dynamically, to handle system hang. SHFH can auto-
matically detect system hang and help system recover
from it. Evaluation results show that SHFH introduces
0.6% performance overhead and can detect system
hang with a false positive rate of 0.58% and a coverage
rate of 95.34%, indicating the effectiveness of the
“light-heavy” detection strategy adopted in SHFH.
Given a recovery rate of 80.56% (making the OS con-
tinue running and providing services), its diagnosis-
based recovery strategy provides a better recovery
granularity than the naive approach that resorts to
restarting the system. Finally, our experimental results
also validate the effectiveness of our hypothesis that



a small number of performance metrics (9 in SHFH)
seem to be sufficient for system hang detection.
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