
147

Making Pointer Analysis More Precise by Unleashing the

Power of Selective Context Sensitivity

TIAN TAN, Nanjing University, China
YUE LI

∗
, Nanjing University, China

XIAOXING MA, Nanjing University, China
CHANG XU, Nanjing University, China
YANNIS SMARAGDAKIS, University of Athens, Greece

Traditional context-sensitive pointer analysis is hard to scale for large and complex Java programs. To address
this issue, a series of selective context-sensitivity approaches have been proposed and exhibit promising results.
In this work, we move one step further towards producing highly-precise pointer analyses for hard-to-analyze
Java programs by presenting the Unity-Relay framework, which takes selective context sensitivity to the next
level. Briefly, Unity-Relay is a one-two punch: given a set of different selective context-sensitivity approaches,
say S = S1, . . . , Sn , Unity-Relay first provides a mechanism (called Unity) to combine and maximize the
precision of all components of S . When Unity fails to scale, Unity-Relay offers a scheme (called Relay) to
pass and accumulate the precision from one approach Si in S to the next, Si+1, leading to an analysis that is
more precise than all approaches in S .

As a proof-of-concept, we instantiate Unity-Relay into a tool called Baton and extensively evaluate it on
a set of hard-to-analyze Java programs, using general precision metrics and popular clients. Compared with
the state of the art, Baton achieves the best precision for all metrics and clients for all evaluated programs.
The difference in precision is often dramatic—up to 71% of alias pairs reported by previously-best algorithms
are found to be spurious and eliminated.

CCS Concepts: • Theory of computation→ Program analysis.

Additional Key Words and Phrases: Pointer Analysis, Alias Analysis, Context Sensitivity, Java

ACM Reference Format:
Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. 2021. Making Pointer Analysis More
Precise by Unleashing the Power of Selective Context Sensitivity. Proc. ACM Program. Lang. 5, OOPSLA,
Article 147 (October 2021), 27 pages. https://doi.org/10.1145/3485524

1 INTRODUCTION

Pointer analysis is important for an array of real-world applications such as bug detection [Chandra
et al. 2009; Naik et al. 2006], security analysis [Arzt et al. 2014; Livshits and Lam 2005], program
verification [Fink et al. 2008; Pradel et al. 2012] and program understanding [Li et al. 2016; Sridharan
∗Corresponding author

Authors’ addresses: Tian Tan, State Key Laboratory for Novel Software Technology, Nanjing University, China, tiantan@
nju.edu.cn; Yue Li, State Key Laboratory for Novel Software Technology, Nanjing University, China, yueli@nju.edu.cn;
Xiaoxing Ma, State Key Laboratory for Novel Software Technology, Nanjing University, China, xxm@nju.edu.cn; Chang Xu,
State Key Laboratory for Novel Software Technology, Nanjing University, China, changxu@nju.edu.cn; Yannis Smaragdakis,
Department of Informatics and Telecommunications, University of Athens, Greece, yannis@smaragd.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
2475-1421/2021/10-ART147
https://doi.org/10.1145/3485524

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

https://doi.org/10.1145/3485524
https://doi.org/10.1145/3485524

147:2 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

et al. 2007]. A more precise pointer analysis is always favored by its clients as it implies, e.g., fewer
false alarms of bugs and vulnerabilities, more accurate code navigation, or potential for optimization.

Context sensitivity has been demonstrated to be a major scheme for improving precision of Java
pointer analysis [Fegade and Wimmer 2020; Feng et al. 2015; Kanvar and Khedker 2016; Lhoták
and Hendren 2008; Lhoták and Hendren 2006; Milanova et al. 2002, 2005; Tan et al. 2017; Thakur
and Nandivada 2019, 2020; Thiessen and Lhoták 2017; Whaley and Lam 2004; Xu and Rountev
2008]. With years of development, traditional context sensitivity performs well for small/medium
programs, e.g., 2obj (object-sensitive pointer analysis with context length being two) can analyze
most DaCapo benchmarks rapidly and precisely [Kastrinis and Smaragdakis 2013; Smaragdakis
et al. 2011]; however, it is hard for it to scale to large and complex Java programs with good
precision [Smaragdakis et al. 2014]. (An analysis not scaling means that it blows up in complexity
and does not terminate even under very high time limits.)
To address this problem, a series of research work [Hassanshahi et al. 2017; Jeon et al. 2019;

Jeong et al. 2017; Li et al. 2018a,b, 2020; Lu and Xue 2019; Minseok Jeon and Oh 2020; Oh et al. 2014,
2015; Smaragdakis et al. 2014; Wei and Ryder 2015] propose to apply context sensitivity selectively
in the sense that contexts no longer apply to all methods, while context elements (e.g., objects,
types, call-sites) and context lengths may vary for different selected methods. Other, non-selected,
methods are treated context-insensitively, in order to enable good scalability.
Conversely, to gain better precision, selective context-sensitivity approaches usually have to

sacrifice efficiency by allowing more methods to be analyzed context-sensitively, sometimes with
longer context lengths or more precise but heavier context elements. In other words, these analyses
need to make careful precision and efficiency trade-offs, where one more step towards precision
may put the analysis at the risk of unscalability [Li et al. 2020]. As a result, seeking further
precision improvement becomes hard, as limited efficiency margins are left to play with. Under
such constraints, if the approach for more precise pointer analysis is not designed well, it may
introduce significant overhead with minor or no precision improvement (e.g., by selecting for
sensitive treatment many precision-useless methods). More commonly, the analysis will choose to
scale, but will sacrifice precision (e.g., by selecting very few methods to treat context sensitively).

Problem. For many real-world applications where points-to or alias information is required, such
as certain bug detectors, security analyzers, etc., good precision is much favored, even if the price
is to run the analysis for a long time (e.g., several hours) [Christakis and Bird 2016]. Thus, the
challenge we seek to address is to achieve, given a long but reasonable time allowance, precise
pointer analysis results for large and complex Java programs, for which traditional context-sensitive
analyses fail to scale, and selective context-sensitive analyses scale but with limited precision.

Method. We introduce a general (meta-)framework called Unity-Relay to produce highly precise
pointer analyses for hard-to-analyze Java programs, by systematically exploiting and utilizing any
selective context sensitivity technique. Unity-Relay is a one-two punch, with precision as its first
priority:
• Unity-Relay takes as inputs a program P and a set of different selective context-sensitivity
approaches, S ;
• it first provides a method (called Unity) to unify all approaches in S (playing the role of a
meta-heuristic), maximizing precision by applying the most stringent context-sensitivity
selection made by any approach in S ;
• if Unity fails to scale, the Relay method is employed. It divides the scalability burden of
Unity into different passes (each pass is a run of context-sensitive pointer analysis guided
by an approach in S), with the precision achieved by one pass being transmitted to and

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:3

accumulated in the next pass: in each pass, the points-to results retrieved from the previous
pass are used to on-the-fly filter intermediate points-to results, keeping inferred points-to
sets small and, thus, enhancing scalability.

Given any selective context-sensitive pointer analysis A (guided by an approach in S), if A is
sound and scalable for P, no matter how precise A is, Unity-Relay can be expected to produce a
sound and scalable analysis with a precision that is guaranteed to be at least as good as A’s, in
the worst case. (Experimental results show that the precision is always better.) This property also
implies that even when new (possibly special-purpose) selective context-sensitivity insights are
developed in the future, Unity-Relay will still be able to leverage them to produce a more precise
analysis in practice.

Results. As a proof-of-concept, we instantiate the Unity-Relay framework in a tool called Baton.
We extensively evaluate Baton on a set of hard-to-analyze Java programs (including the toughest
programs evaluated in the past literature of selective context-sensitive pointer analysis for Java),
using three general precision metrics and four popular clients (also the most complete set of
precision metrics/clients used in recent literature). Compared to the state of the art, experimental
results show that Baton is able to improve precision significantly, and achieves the best precision
for all metrics and clients for all evaluated programs. To the best of our knowledge, this is the
first time that this level of analysis precision has been attained for these hard-to-analyze programs.
Moreover, because of Unity-Relay’s nature as a general meta-framework, we expect it to see more
future instantiations and to unleash the power of more selective context-sensitivity approaches, to
produce more precise pointer analyses.

In summary, this work makes the following contributions:
• We present Unity-Relay, a simple and practical framework to produce precise pointer
analyses for hard-to-analyze Java programs, by unleashing the power of selective context
sensitivity (Section 3).
• We formulate the Unity-Relay framework, prove its soundness and precision guarantees,
and discuss its scalability (Section 4).
• We present Baton, a tool instantiated from the Unity-Relay framework, which will be
released as an open-source tool (Section 5).
• We conduct extensive experiments by comparing Baton with the state of the art, to demon-
strate its effectiveness in the real world (the experimental results can be obtained using the
accompanying artifact [Tan et al. 2021]) (Section 6). Baton substantially improves on the
precision of previous algorithms in the literature—e.g., eliminating over 33% of alias pairs
(soundly determined to be spurious) on average, and up to 71%, compared to the best past
contender evaluated.

2 BACKGROUND

We assume that the reader is familiar with the high-level concepts of pointer analysis, as introduced
in several surveys [Smaragdakis and Balatsouras 2015; Sridharan et al. 2013]. This section describes
some necessary background knowledge about context sensitivity for whole-program pointer
analysis for Java.

Traditional Context Sensitivity. A method is analyzed context-sensitively means that the static
abstraction of different dynamic instantiations of variables and heap objects within the method will
be treated separately during analysis under different abstract entities called contexts. Accordingly,
spurious object flows will be reduced, thus making the analysis more precise. Given a method
m, each of its contexts typically consists of a list of consecutive context elements in the form of

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:4 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

[c1,c2,...] to model different run-time conditions. For example, for call-site sensitivity, c1 is
the call site of m, and c2 is the call site of the method containing c1, etc. However, for efficiency,
only the most recent l context elements are kept (l is also called the context length) and l is usually
limited to a small number for whole-program analysis in practice [Kastrinis and Smaragdakis
2013; Smaragdakis et al. 2011]. There are three mainstream context-sensitivity variants for Java
pointer analysis: call-site sensitivity, object sensitivity, and type sensitivity. Henceforth, we use
3obj to denote object sensitivity with context length being 3. Longer context indicates more
precision: more spurious data flows can be possibly eliminated. Thus, 3obj is more precise than
2obj. For different kinds of context elements with the same length, past work has demonstrated
that object sensitivity typically outperforms call-site sensitivity, in terms of both precision and
efficiency [Milanova et al. 2005; Smaragdakis et al. 2011], and is more precise but alsomore expensive
than type sensitivity [Smaragdakis et al. 2011; Tan et al. 2017]. Traditionally, context-sensitive
pointer analysis uniformly applies context sensitivity to every method in a program to maintain
high precision. However, this approach often does not work for large and complicated programs as
such treatment is too costly to scale [Li et al. 2018b; Smaragdakis et al. 2014].

Selective Context Sensitivity. Selective context sensitivity proposes to apply context sensitivity
selectively, only for precision-useful/non-scalability-threat methods. The analysis precision of such
methods will help improve the overall program analysis precision, while not incurring so much cost
as to make the analysis hard to scale. The remaining methods are analyzed context-insensitively
so that the space and time cost originally incurred for these methods (in traditional context
sensitivity) is saved, leaving room to produce precise and scalable analyses even for hard-to-analyze
programs. However, it is challenging to accurately determine which methods are precision-useful
but not scalability-threat in general. To deal with this problem, in the past years, various selective
context-sensitivity approaches have been presented, based on different insights and policies. For
example, the target methods could be selected according to expert experience [WALA 2018],
program patterns [Li et al. 2018a, 2020], abstracted memory capacity [Li et al. 2018b], parameterized
heuristics [Hassanshahi et al. 2017; Smaragdakis et al. 2014], or machine learning approaches [Jeon
et al. 2018; Jeong et al. 2017]. In addition, in selective context sensitivity, some approaches apply
the same context sensitivity to the selected methods [Hassanshahi et al. 2017; Li et al. 2018a, 2020;
Smaragdakis et al. 2014], while in other approaches context elements and lengths may vary for
different subsets of the selected methods [Jeon et al. 2019; Jeong et al. 2017; Li et al. 2018b]. We
refer the readers to Section 7 for more details.

3 THE UNITY-RELAY FRAMEWORK, INFORMALLY

We first give an overview of the Unity-Relay framework (Section 3.1), and then explain the key
ideas of Unity (Section 3.2) and Relay (Section 3.3), respectively.

3.1 Overview

Figure 1 shows a pictorial overview of the Unity-Relay framework: given a program P and a set of
selective context-sensitive (C.S.) approach/strategy components, S , the framework will yield highly
precise pointer analysis results for P.

Unity-Relay is a one-two punch. It first calls its Unity component. Taking as input the results
obtained by running each approach in S for P, the context-sensitivity selector of Unity (C.S. Selector
in Figure 1) unifies them and makes new configuration about which portion of P should be analyzed
by what context-sensitivity variants (i.e., what are the context elements and lengths) to maximize
the precision, according to the unity principle, as introduced in Section 3.2. Intuitively, the Unity

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:5

C.S. Selector of
Unity (Figure 2)

Selective C.S.
Pointer Analysis

Selected
C.S.

C.S. Selector of
Relay (Figure 3)

Selective C.S.
Pointer Analysis
filtered by pai

Selected
C.S.

Points-To info in previous
Unity Relay

Trigger
when

Unity
fails

Precise Pointer Analysis Results for P

Program P

Selective C.S.
Approaches

pass prePT

prePT

Fig. 1. Overview of the Unity-Relay Framework.

principle maintains for each program element the most precise context that any component context-
sensitivity approach would use. Then the new selected context-sensitivity information (Selected C.S.
in Figure 1) will guide the selective context-sensitive pointer analysis to analyze P, and its results
will be the output of Unity-Relay if the analysis is able to finish running within the time limit;
otherwise (i.e., if Unity is too expensive to scale), Unity-Relay will trigger its Relay component
to analyze P.

Generally, given n approaches in S , Relaywill run the selective context-sensitive pointer analysis
n times (i.e., we have n passes in Relay). In each pass, as shown in Figure 1, the selective context-
sensitive pointer analysis is guided by the context-sensitivity information (Selected C.S.) output
from the C.S. selector of Relay according to the relay principle as illustrated in Section 3.3. Between
successive passes, the precision of the earlier pass will be transmitted to and accumulated in the
next pass. This is achieved by soundly filtering the pointer analysis results in the current pass
by using the points-to information (points-to sets of variables) from the previous pass (PTpre in
Figure 1). As a result, in Relay, the scalability burden is shared in each analysis run (i.e., each pass):
a component strategy is not burdened by others, but instead each strategy that completes helps
both the precision and the scalability of the rest. Although overall precision is not guaranteed to
reach that of Unity, precision improvements are reaped in a stable and accumulative way.

3.2 Unity

Recall that every selective context-sensitive analysis represents a precision and efficiency trade-off,
where precision bumps up against the limits of analysis scalability. In other words, for past selective
context-sensitive analyses, the degree of precision (typically: the proportion of the program to be
analyzed context-sensitively) is chosen to be approximately at a point where further improving it
would render the analysis non-scalable. According to previous work, treating context-sensitively
even a small set of methods may significantly hinder scalability, for the “wrong” choice of meth-
ods [Li et al. 2020]. Now it seems that we are trapped: if a small step towards precision may hit the
scalability wall (in the precision and efficiency balance made by each selective context-sensitivity
approach), how can we reap a further noticeable precision improvement in a general, policy-agnostic
meta-framework? To escape from the trap, in Unity, we propose to take a big step forward towards
higher precision, by allowing many more methods to be analyzed under context sensitivity, with

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:6 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

2obj

2type

2obj1type

3obj

CI

2obj

CI

2obj1type

3obj

CI

2type

CI

UnityS3S2S1

Fig. 2. An example for illustrating the idea of Unity. S1, S2 and S3 are three input selective context-sensitivity
approaches. The four squares show the selected context-sensitivity information for the same program P
(i.e., which methods of P should be analyzed by what context-sensitivity variants) yielded by the three

input selective approaches (S1, S2 and S3) and Unity respectively. For example, the square of S1 means: the

S1 approach determines that the methods enclosed in the green circle will be analyzed by 2obj while the
remaining methods of P will be analyzed context-insensitively (i.e., CI).

heavier context elements and longer context lengths, if possible. This counterintuitive proposal is
based on the following insight.

Insight. Analyzing more methods context-sensitively may not incur an efficiency decline (some-
times it may even accelerate an analysis as more false data flows are pruned away), as long as
the right methods are chosen. Avoiding scalability-threat methods is essential [Li et al. 2020;
Smaragdakis et al. 2014], but the net number of methods analyzed context-sensitively is not.

As described in Section 2, each of the existing selective context-sensitivity approaches (henceforth,
just “selective approaches”) has its own insight (e.g., based on expert experience, parameterized
heuristics, principled program patterns, etc.) to identify which methods are more likely useful for
improving precision while not incurring much efficiency cost, when analyzed context-sensitively.
Limited by the effectiveness of each insight, every approach maymiss a collection of methods which
are truly precision-useful and efficiency-friendly; however, this problem can be alleviated when
combining more selective approaches to identify more target methods. As a result, we propose
to simultaneously and context-sensitively analyze all the methods identified by a set of selective
approaches, S . Although now possibly many more methods need to be analyzed context-sensitively,
we still have a chance to obtain an analysis that is scalable even if we analyze them together, as
each of these extra methods is determined as not a scalability threat by at least one approach in
S . Hence, although it is hard to give one principle to accurately decide which methods, say M, are
precision-useful but not scalability-threatening, our proposal naturally takes advantages of the
insights of different selective approaches for identifying M from different perspectives.
We illustrate the key idea of Unity in Figure 2. Assume we have three selective approaches

S1, S2, and S3. Figure 2 depicts the selected context-sensitivity information determined by each
approach for the same program P. For instance, after analyzing P, S1 reports that the set of methods
in the green circle (in S1 of Figure 2) should be analyzed by 2obj and the remaining methods (the
gray part in S1) need to be analyzed context-insensitively (CI). Similarly, we have the results for S2
and S3 in Figure 2, and in the case of S3, three context-sensitivity variants, 3obj, 2obj and 1type
are selected for different sets of methods.

What does Unity produce given the above three approaches and their selected context-sensitivity
information? Briefly, Unity finds out themost precise configuration by reassigning context-sensitivity
variants to the methods which are reported to be analyzed context-sensitively by at least two input
approaches. For example, among the overlapped methods reported by S1 and S3, from the point

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:7

of view of S1, some methods that should have been analyzed under 2obj, are now assigned to
3obj (color turns from green to red) as 3obj is more precise than 2obj; for the rest of overlapped
methods, they remain green (i.e., still be analyzed by 2obj) as 2obj is more precise than 1type
(reported by S3). After applying similar treatment to other overlapped methods (with the disjoint
ones unchanged), we get the output of Unity as in Figure 2. Note that the methods reported by all
three input approaches (the middle part of the Unity figure) remain green as 2obj (reported by S1)
is more precise than 2type (by S2) and 1type (by S3). Section 4 will detail the rules on how Unity
deals with more input approaches with different context-sensitivity variants.
From the point of view of each selective approach, Unity modifies it by (1) adding many more

methods (identified by other approaches) to be analyzed context-sensitively, and (2) upgrading
the context-sensitivity variant to the most precise one for the methods which are also selected by
other approaches. We have explained the insight for (1) at the beginning of Section 3.2, and the
insight for (2) is similar: if a method m is reported to be analyzed under a certain context-sensitivity
variant, cs, by an input approach s , this implies that according to the insight of s , m is considered
as not a scalability-threat, regardless of how costly cs is. Then, if the input approaches are reliable,
we still have a chance to produce a scalable analysis, even if selecting the most precise cs. Later,
experimental results further demonstrate the validity of the Unity insight: even if many more
methods are analyzed context-sensitively and are under the most precise configuration (w.r.t. the
input approaches), Unity is still able to scale for 12 out of 13 hard-to-analyze programs (with
default settings).
However, there is no guarantee regarding the scalability of Unity. What can we do if Unity

fails to scale? As a second try, a straightforward approach is to not make the analysis too costly.
For example, if some overlapped methods M are reported to be analyzed under 3obj and 1type by
different input approaches, what about considering the less precise (also less costly) one, i.e., 1type?
Nevertheless, this may introduce significant precision loss, and if M is critical form improving
precision, such treatment may make the analysis even less precise than the original one(s) guided
by certain input approach(es) individually. To reap as much precision as possible while achieving
good scalability, we employ the Relay technique.

The core insight of Relay is to divide the scalability burden of Unity into different passes (each
pass is a run of selective context-sensitive pointer analysis) and the precision achieved by the
former pass can be transmitted to and accumulated in the next pass. Based on this insight, we
design two options of Relay, called Relay-o1 and Relay-o2 that the former is more precise but
less scalable than the latter. Figure 3 depicts the above idea with the same input selective approaches
as in Figure 2. We introduce Relay-o1 first.

3.3 Relay

The first pass of Relay-o1 in Figure 3 differs from Unity in that it only analyzes the methods (say
M1) selected by S1 (enclosed in the circle with solid line) context-sensitively, with the remaining
ones being analyzed under CI. Similarly, only the methods, say M2 (M3) selected by S2 (S3) are
analyzed context-sensitively in pass 2 (pass 3). Thus, for each context-sensitive method of M1 (M2 or
M3), as shown in the figure, Relay selects the same context-sensitivity variant for it as in Unity,
namely, still the most precise configuration suggested by any of the combined approaches. For example,
for M1 in pass 1, its context-sensitivity variants distribution is the same as the one of Unity in
Figure 2 (i.e., the same subset of methods are assigned to 3obj while the remaining methods
are assigned to 2obj). For each pass of Relay, only a subset of methods of Unity are analyzed
context-sensitively. Although this does not ensure better scalability than Unity, no more methods
than the base approach are analyzed context-sensitively—only the same methods may be analyzed

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:8 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

2obj

CI

3obj

2obj1type

3obj

CI

2obj

2type

CI

2type

2obj

Pass 1 Pass 2 Pass 3

Precision of
Pass 1 (P1)

Precision of
Pass 2 (P2)P1 P2

2obj

CI

2obj1type

3obj

CICI

Pass 1 Pass 2 Pass 3

Precision of
Pass 1 (P1)

Precision of
Pass 2 (P2)P1 P2

Relay-o2

Relay-o1

2type

Fig. 3. Examples for illustrating the idea of Relaywith the same input approaches setting as in Figure 2. Relay
has two options, Relay-o1 and Relay-o2 and the former is more precise but less scalable than the latter. In

each pass of both options, only the methods enclosed in the solid circles, say M, are analyzed context-sensitively
(the dotted lines in Relay-o1 are to facilitate understanding). Both options adopt the same precision filtering

mechanism, and their difference only lies in what context-sensitivity variants are assigned to M.

with a more precise context. Therefore, the probability to select scalability-threat methods is low,
making Relay more likely to scale compared to Unity.

After running the first pass, its precision, which is reflected in the points-to set for every variable,
will be transmitted to the next pass (pass 2). Then, in pass 2, we can use the precision of pass 1,
i.e., the points-to information, to help soundly filtering the points-to sets for all variables when
performing the analysis in pass 2. For example, assume a variable v points to three objects under CI
with its points-to set, say pt(v), being {o1,o2,o3}. After pass 1, pt(v) becomes {o1,o3} where
o2 is identified as a spurious object by analyzing M1 context-sensitively. However, in pass 2, purely
analyzing M2 under the contexts shown in Figure 3 cannot recognize that v should not point to o2.
However, this imprecision does not matter, as the pt(v) transmitted from pass 1 can be used to
filter pt(v) during the analysis in pass 2, i.e., preventing o2 from being propagated to pt(v). Such
filtering is safe as the pointer analysis in pass 1 is sound, so no true objects will be filtered away in
Relay (this will be formally proven in Section 4).
Finally, although uncommon, what if Relay-o1 is not scalable? After all, given a program, we

hope to confidently rely on Unity-Relay for yielding precise pointer analysis results all the time.
Under this context, we design Relay-o2 as the last line of defense of Unity-Relay. Relay-o2
employs the same principle as Relay-o1 with the exception that context-sensitivity variants
(selected by input approach Si) are not reassigned any more in each pass, say Passi (see Relay-o2
in Figure 3). In other words, Passi and the analysis guided by Si , say Ai , adopt the same selective
context sensitivity. The only difference between running the selective approaches independently is
that precision accumulates, using the same filtering mechanism as in Relay-o1. Thus, in Passi , the
points-to set for each variable is never larger than the one in Ai , resulting in less data propagation
and faster analysis convergence. The only extra cost introduced in Relay-o2 is the process of
filtering, which is small compared to the overhead of a context-sensitive pointer analysis, and easily
offset by the aforementioned efficiency benefit. Thus, we can expect Relay-o2 to scale as long

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:9

1 x.f = a;

2 b = y.f;

3 ...

4 p.f = a;

5 b = q.f;

Variable CI S1 S2 S1&S2 Relay
a o1 o1 o1 o1 o1
x o2 o2 o2 o2 o2
y o2,o3 o3 o2,o3 o3 o3
p o4 o4 o4 o4 o4
q o4,o5 o4,o5 o5 o5 o5
b o1 o1 o1 o1

Fig. 4. Example for illustrating precision intervention in Relay. Specifically, b is supposed to be a null pointer

at run time, and only Relay can analyze it precisely in this case.

as Ai scales. We will further discuss the scalability of Relay-o2 in Section 4. Note that Relay-o2
is fundamentally different from merely intersecting the points-to results of all pointer analyses
guided by the input approaches. In Relay-o2, there is early precision intervention of each analysis
pass to the next: the pointer analysis in each pass is filtered by the points-to results produced by the
previous passes on the fly, likely preventing the computation of more spurious value flows during
the analysis. As a result, Relay-o2 is more precise than simply intersecting the final points-to sets
after individually running each guided pointer analysis without such precision intervention.
We next use an example, in Figure 4, to illustrate the benefit of precision intervention. The left

side of Figure 4 is an example code snippet, where the value of a is stored into x.f and p.f (through
lines 1 and 4), and b loads values from y.f and q.f (through lines 2 and 5). The table on the right
side contains the points-to sets of the variables in the code snippet under different pointer analyses.
Column CI gives the points-to sets produced by a context-insensitive pointer analysis, and we
consider two selective context-sensitive pointer analyses, S1 and S2, which identify o2 and o4 as
spurious objects for variables y and q, respectively. If we simply intersect the points-to results of S1
and S2, then we can eliminate spurious objects for y and q, as shown in column S1&S2. However, b
still points to the spurious object o1 under S1&S2, as o1 can flow to b through either line 2 or line 5:
both S1 and S2 consider o1 to be valid for b, for different reasons each. Among the analyses in the
table, only Relay can block the two flows (through lines 2 and 5) simultaneously. In Relay, with
S1 as pass 1 and S2 as pass 2, S2 identifies o4 as spurious for q so that the flow through line 5 can
be blocked (as p and q are not aliased). Further benefiting from the precision intervention, the flow
through line 2 is also blocked as pass 2 also incorporates the result from pass 1, i.e., o2 is identified
as spurious for y by S1 (so that x and y are not aliased). As a result, o1 is identified as spurious for
b in pass 2. (The points-to set of b is empty, based on the fragment and example values shown, but
other program statements could give it values, orthogonally to the example—e.g., by setting y.f or
q.f.)

In the overall Relaymechanism, Relay-o1 and Relay-o2 apply independently to analysis passes
and are mixed as necessary for scalability. The two Relay variants can be seen as the best and worst
precision options, and there is design space between them for making precision and efficiency
trade-offs. In our design, precision is the first priority, so for every Passi , we first attempt Relay-o1.
If Relay-o1 is not scalable, we select Relay-o2 (which scales if the base approach does), and repeat
the same scheme (i.e., first trying Relay-o1, then Relay-o2 if it fails) to Passi+1, etc. until all n
passes complete (assuming there are n input selective approaches).
The running order for different passes of Relay does not affect the soundness and precision

guarantees of Relay (including both Relay-o1 and Relay-o2) and also the scalability potential of
Relay-o2 (as proved and discussed in Section 4.4). In other words, in practice, regardless of the
pass ordering, users can rely on Relay to produce an analysis that is more precise than the one (say

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:10 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

A) guided by any input selective approach, and can expect Relay-o2 to scale as long as A scales.
However, the pass ordering may affect the final precision of Relay (although experimental results
show that such effect is very minor). For example, assume two variables v1 and v2 point to {o1,o2}
and {o3,o4} respectively under CI. Pass 1 identifies o2 as a spurious object for v1, and pass 2 can
identify o4 as a false object if and only if it is aware that v1 does not point to o2 with the help of
the result from pass 1. But when we swap the order of pass 1 and pass 2, v2 may still point to o4
(actually a spurious object) at the conclusion of all passes, resulting in different precision. We will
discuss the pass ordering issue using the experimental results in Section 6.2.

4 FORMALISM AND PROPERTIES

We formalize the Unity-Relay framework, prove its key properties, and discuss its important
features. Specifically, we detail how to unify various context-sensitivity approaches with different
context elements and lengths, and how to guide selective context-sensitive pointer analysis in each
pass to filter spurious objects using the results from the previous pass, while achieving soundness
and precision guarantees.

4.1 Domain and Notations

Our notation is shown in Figure 5. For formalization purposes, two domains of context elements,
K and E are introduced. The former denotes the kinds of context elements, i.e., obj for object
sensitivity, type for type-sensitivity and call for call-site sensitivity (identified by their locations
in the program) while the latter denotes the concrete context elements forming each context c ∈ C.
For instance, in object sensitivity, c consists of a list of heap objects (allocation sites) oi ∈ E . Each
context-sensitivity variant cs ∈ CS can be expressed as a pair of context length l and a kind of
context element k , denoted by lk , e.g., 2obj or 1type, hence we have CS = N×K, where N denotes
the natural numbers.

pt and fpt denote the analysis results. pt(c,x) represents the points-to set of variable x under
context c . fpt(c,oi , f) represents the points-to set of instance field f of an abstract object oi under
context c . The objects in the points-to sets of pt and fpt are also qualified by contexts, i.e., heap
contexts.

gencs denotes the function that generates contexts according to the length and kind of context
elements of cs , which will be further explained in Section 4.2. contextsOf maps a method to a set of
contexts under which the method is analyzed. selectCS is the core of selective context sensitivity,
which selects a proper context-sensitivity variant cs for each method. We use S to denote a set
of selective approaches, indexed by subscript: Si . If a pointer analysis PA is guided by a selective
approach Si , we refer to it as PA-Si .

4.2 Selective Context-Sensitive Pointer Analysis

We present a formulation of general selective context-sensitive pointer analysis in Figure 6, which
covers five basic statements: object allocation ([New]), local assignment ([Assign]), field load ([Load])
and store ([Store]), and method call ([Call]). Similar to [Sridharan et al. 2013; Tan et al. 2016], we
elide the rules for static members and arrays, as the former is straightforward and the latter can be
modeled as load and store to an artificial field of each array. In Figure 6, the premises within boxes
are only related to Unity-Relay, and thus can be ignored for now.

For each rule in Figure 6,m denotes the method containing the corresponding statement (in blue
color). Here we only explain [New] and [Call] as the other three rules are standard.

In context-sensitive pointer analysis, an abstract object is typically represented by a heap context
and the label of the allocation site, as in our [New] rule. For simplicity, we directly use the context
of the method containing the allocation site (i.e., c) as the heap context for the created abstract

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:11

variables x ,y ∈ V
heap objects oi ,oj ∈ O (obj)

methods m ∈ M
fields f ∈ F
types T ∈ T (type)

program locations i, j ∈ L (call)
context elements oi ,T , j ∈ E = O ∪ T ∪ L...

kinds of context elements k ∈ K = {obj, type, call, ...}
contexts c ∈ C = E0 ∪ E1 ∪ E2...

context-sensitivity variants cs = lk ∈ CS = N × K

pt : C × V→ P (C × O)
fpt : C × O × F→ P (C × O)

gencs : C × O × C × L→ C
contextsOf : M→ P (C)
selectCS : M→ CS

Fig. 5. Domain and notations.

object. This is a bit different from some existing literature [Jeon et al. 2018; Milanova et al. 2005;
Smaragdakis and Balatsouras 2015; Sridharan et al. 2013], which derives the heap context from the
method context—e.g., allowing to cut out part of the method context, as the heap context may be
shorter. We omit this general treatment in the formal model, for simplicity of illustration purposes.
Our implementation supports the more general, full choice in selecting heap contexts.

In [Call], function dispatch(oi ,д) is applied to resolve the virtual dispatch of д on receiver object
oi to the calleem′.

Without loss of generality, we model the results of each selective context-sensitivity approach
as a function selectCS, which is invoked to select a proper context-sensitivity variant cs form′.
Actually, traditional context sensitivity can be seen as a special case of selectCS, which returns the
same cs for all methods.

Each context-sensitivity variant cs corresponds to a function gencs (see Figure 5), which generates
contexts for target methods based on the information available at the call site. For generality, as
shown in Figure 5, gencs accepts four arguments: the heap context (c ′) of the receiver object (oi),
the context of callerm′ (c), and the call site (j), so that it can generate contexts for different context-
sensitivity variants, including object, type, and call-site sensitivity. The generated context for the
target method is denoted ct .
We usem′this to represent the this pseudo-variable of methodm′,m′pk to represent the k-th

parameter ofm′, and define for everym′ a variablem′r et holding all its return values. The rest of
[Call] propagates arguments and return values between caller in context c and callee in context ct .

4.3 Unity

We formalize Unity by defining its C.S. selector (Figure 1), i.e., selectCS in Figure 6. Based on a set
of input selective approaches S , Unity selects the most precise context-sensitivity variant for each
method. We define ⪯, a binary relation of precision between two context-sensitivity variants. If cs
is less precise than (or as precise as) cs ′, we write cs ⪯ cs ′.
The precision of different context-sensitivity variants can be compared based on their lengths

and kinds of context elements. The impact of length on precision is well understood, i.e., longer
length has better precision (e.g., 2obj ⪯ 3obj).

Are context-sensitivity variants with different kinds of elements comparable in terms of precision?
The answer is yes, but not always. Here, we say two variants are comparablemeans that one of them

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:12 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

i : x = new T () c ∈ contextsOf(m)

⟨c,oi ⟩ ∈ pt (c,x)
[New]

x = y c ∈ contextsOf(m)
⟨c,oi ⟩ ∈ pt (c,y) oi ∈ ppt(x)

⟨c,oi ⟩ ∈ pt (c,x)
[Assign]

x = y. f c ∈ contextsOf(m) ⟨c ′,oi ⟩ ∈ pt(c,y)
⟨c ′′,oj ⟩ ∈ fpt(c ′,oi , f) oj ∈ ppt(x)

⟨c ′′,oj ⟩ ∈ pt(c,x)
[Load]

x . f = y c ∈ contextsOf(m)
⟨c ′,oi ⟩ ∈ pt (c,x) ⟨c

′′,oj ⟩ ∈ pt (c,y)

⟨c ′′,oj ⟩ ∈ fpt(c ′,oi , f)
[Store]

j : x = y.д(a1, ...,an) c ∈ contextsOf(m)

⟨c ′,oi ⟩ ∈ pt (c,y) oi ∈ ppt(m′this)
m′ = dispatch(oi ,д)

cs = selectCS(m′) ct = gencs (c
′,oi , c, j)

⟨ca ,oa⟩ ∈ pt (c,ak), 1 ≤ k ≤ n oa ∈ ppt(m′pk)

⟨cr ,or ⟩ ∈ pt (c
t ,m′r et) or ∈ ppt(x)

ct ∈ contextsOf(m′) ⟨c ′,oi ⟩ ∈ pt (ct ,m′this)
⟨ca ,oa⟩ ∈ pt (c

t ,m′pk) ⟨c
r ,or ⟩ ∈ pt (c,x)

[Call]

Fig. 6. Rules for selective context-sensitive pointer analysis. The premises enclosed in boxes are specific to

Unity-Relay-based pointer analysis.

is always more precise than (or as precise as) the other one. For such comparison, we introduce
notation k ⊑ k ′ to represent that using context element k is less precise than (or as precise as) k ′.

The variants of some kinds of context elements are comparable, e.g., obj and type. As type is a
coarser context abstraction over (and always less precise than) object [Smaragdakis et al. 2011],
we have type ⊑ obj, and accordingly, ltype ⪯ lobj. In other cases, such as lobj and lcall, their
precision are theoretically incomparable. We will discuss how to handle such cases at the end of
this section. For now, we assume that all concerned context-sensitivity variants are comparable.

Now we define cs ⪯ cs ′:

cs ⪯ cs ′ iff cs = CI ∨ (l ⩽ l ′ ∧ k ⊑ k ′)

where cs = lk and cs ′ = l ′k ′ (1)

Formula (1) states that any context sensitivity variant is not less precise than CI, and cs ⪯ cs ′ only
when both length and kind of context elements of cs are at most as precise as those of cs ′.

Next we can formalize the C.S. selector of Unity as a function selectCS-unityS (m):

selectCS-unityS (m) = max ⪯Si ∈S selectCSi (m) (2)

Based on ⪯, max ⪯Si ∈S chooses the most precise cs from a set of selective approaches S for
methodm. selectCSi corresponds to the selector function for Si . By specifying selectCS in [Call] to
selectCS-unityS , we get a pointer analysis guided by Unity, i.e., PA-UnityS .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:13

Theorem 4.1 (Soundness of Unity). PA-UnityS is sound.

Proof. By rules in Figure 6, PA-UnityS is a standard Andersen-style pointer analysis, and the
only difference from other selective context-sensitive pointer analyses is selectCS. Selecting different
contexts for methods affects precision but not soundness [Jeon et al. 2018; Jeong et al. 2017; Li et al.
2018b, 2020; Smaragdakis et al. 2014]. Hence PA-UnityS is sound. □

Following existing literature [Kastrinis and Smaragdakis 2013; Li et al. 2018b; Lu and Xue
2019; Minseok Jeon and Oh 2020], contexts in points-to results are ignored when measuring
the precision of context-sensitive pointer analyses. To this end, we use ptPA (x) to represent the
points-to set of variable x in pointer analysis PA, without contexts, e.g., if pt(c,x) = {⟨ci ,oi ⟩} and
pt(c ′,x) = {⟨c j ,oj ⟩} in PA, then ptPA (x) = {oi ,oj }.

Definition 4.2 (Precision of Pointer Analysis). Given two sound pointer analyses PA and PA′, PA
is at most as precise than PA′, denoted PA ⪯ PA′, if for each variable x : ptPA (x) ⊇ ptPA′ (x).

(We informally also use the convenient forms “less precise”, as a synonym of “at most as precise”,
and “more precise” as a synonym of the converse. “Less than or equally” and “more than or equally”
would have been more accurate, but inconvenient.)

We define the precision of a pointer analysis based on the points-to sets of each variable, as they
are the most important results of pointer analysis and used by virtually all its clients.

Theorem 4.3 (Precision of Unity). Given a set of selective approaches S, ∀Si ∈ S : PA-Si ⪯
PA-UnityS .

Proof. By Equation (2), the cs selected by selectCS-unityS for each method is always more
precise than the one selected by any Si ∈ S . This ensures that for each variable x in any PA-Si ,
ptPA-Si (x) ⊇ ptPA-UnityS (x). Hence, ∀Si ∈ S : PA-Si ⪯ PA-UnityS . □

4.4 Relay

Given a set of selective approaches S , in Relay, we run |S | pointer analysis passes to divide the
scalability burden into different passes (Section 3.3). Now we formalize the C.S. selector (Figure 1)
of the two options of Relay (Relay-o1 and Relay-o2) for any passi .

We define the C.S. selector of Relay-o1 for passi (denoted by selectCS-relaySi), as follows:

selectCS-relaySi (m) =

selectCS-unityS (m) if selectCSi (m) , CI

CI otherwise
(3)

For a methodm, if selectCSi (result of the i-th selective approach) selects a non-CI variant form,
then selectCS-relaySi leverages selectCS-unityS to select the most precise cs , otherwise, CI is selected,
as illustrated in Figure 3.
In Relay-o2, to ensure scalability in passi , as explained in Section 3, we use the same context

selector function as Si :
selectCS-relaySi (m) = selectCSi (m) (4)

In each pass of Relay (except pass1), we apply filtering on the points-to sets of variables based
on the points-to results from the previous pass, to improve precision by reducing spurious data
flows. Such filtering is formalized as the premises in boxes of [Assign], [Load] and [Call] (Figure 6),
where ppt(x) denotes the points-to set of variable x (without contexts) in the previous analysis pass
(ppt reads as “previous points-to set”). We ignore contexts in ppt as the contexts of different passes
may not be possible to match. These boxed premises ensure that if the previous analysis concludes
that variable x does not point to object oi , then all ⟨_,oi ⟩ will be filtered out from pt(_,x) in the

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:14 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

current (and future) passes, as they are identified as spurious points-to information by previous
analyses.

Filtering prevents spurious objects from being propagated to variables. [New] does not propagate
spurious objects (for statement i : x = newT (), x must point to oi). [Store] propagates objects to
instance fields (not variables), and the stored objects can only be accessed by a load operation. Then
with the filtering by ppt in [Load], spurious objects from instance fields will not be propagated to
other variables. Thus we do not need to apply filtering for [New] and [Store].
With filtering, the precision achieved in each pass can be transmitted to and accumulated in

later passes.

Lemma 4.4 (Soundness of Filtering). In Figure 6, if ppt(_) are the results of a sound pointer
analysis PA, then the resulting filtered pointer analysis PA′ is also sound.

Proof. By [Assign], [Load], and [Call], the filtering only removes the points-to results which are
absent in PA. Since PA is sound, it will not filter out true points-to results. Hence the filtering based
on PA does not affect soundness in PA′. □

Theorem 4.5 (Soundness of Relay). For any passi in Relay, PA-RelaySi is sound.

Proof. For any passi in Relay, we assume that PA-RelaySi may use any approach in S , i.e., the
approaches in S can be arranged in any order. By the rules in Figure 6, PA-RelaySi without pointer
analysis filtering is sound (refer to the proof of Theorem 4.1). As pass1 of Relay does not have
filtering, PA-RelayS1 is sound (regardless of the approach it uses). The filtering of PA-RelaySi is
based on the results of PA-RelaySi−1. Thus, by Lemma 4.4, no matter what approaches PA-RelaySi−1
and PA-RelaySi use (i.e., the order of approaches is irrelevant), if PA-RelaySi−1 is sound, PA-RelaySi
is sound. By induction, for any passi , PA-RelaySi is sound. □

Theorem 4.6 (Precision of Relay). Given a set of selective approaches S, ∀Si ∈ S : PA-Si ⪯
PA-RelaySi ⪯ PA-RelayS

|S | (the last pass of Relay) for both Relay-o1 and Relay-o2.

Proof. Similarly to the proof of Theorem 4.5, we assume that PA-RelaySi may use any approach
in S . By Equations (3) and (4), for each method, the cs selected by selectCS-relaySi (of both Relay-o1
and Relay-o2) is more precise than that selected by selectCSi , thus, ∀Si ∈ S : PA-Si ⪯ PA-RelaySi
regardless of what approach Si is. By pointer analysis filtering, each variable x in passi must point
to fewer (or the same) objects than x in passi−1, i.e., PA-RelaySi−1 ⪯ PA-RelaySi ; in other words,
each pass is more precise than all its previous passes, no matter what approaches these passes
use (i.e., the order of approaches is irrelevant). As PA-RelayS

|S | is the last pass of Relay, we have
∀Si ∈ S : PA-RelaySi ⪯ PA-RelayS

|S | . Hence, ∀Si ∈ S : PA-Si ⪯ PA-RelaySi ⪯ PA-RelayS
|S | . □

Interestingly, Theorem 4.6 holds for Relay-o2 regardless of whether the context-sensitivity
variants selected by selectCS-relaySi are comparable or not. Since by Equation (4), Relay-o2 selects
the same context-sensitivity variants as the selective approach Si in passi , and further by the
precision accumulation (via filtering), PA-RelaySi is at least as precise as (practically more precise
than) PA-Si . Accordingly, the last pass of Relay-o2 is at least as precise as any PA-Si .
As for Unity and Relay-o1, in the case that some selected variants are theoretically incom-

parable, e.g., 2obj and 2call, their precision guarantee does not hold in theory. But in practice,
users can choose an appropriate one empirically. E.g., 2obj is typically much more precise than
2call [Kastrinis and Smaragdakis 2013; Tan et al. 2016]. In this way, we can still obtain from
Unity-Relay a pointer analysis that is likely more precise than any Si in practice.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:15

Scalability. Relay-o2 is the last line of defense of Unity-Relay: given a set of selective ap-
proaches S , we can expect Relay-o2 to scale as long as ∀Si ∈ S : PA-Si scales. With conventional
approaches, when context-sensitively analyzing a set of scalability-threat methods, (1) the size of
context-sensitive points-to relations may become large (thus needing much more time to handle
in every analysis iteration), and (2) the analysis may need many more iterations to reach a fixed
point. The simultaneous effects of (1) and (2) make the analysis complexity blow up, becoming
unscalable. However, for Relay-o2, in each pass the context-sensitivity variant selected is the same
as that of PA-Si for every method, and due to the filtering mechanism, the points-to set for every
variable is never larger than the one in PA-Si (note that this holds regardless of the pass ordering
in Relay-o2); therefore, in Relay-o2, there will be no more data propagated in each iteration and
no more iterations until convergence. Thus Relay-o2 scalability is ensured, as long as each PA-Si
scales. The only extra cost introduced in Relay-o2 is its filtering process and its essence is querying
whether an element (object) belongs to a set (points-to set), which can be implemented efficiently,
and unlike (1) and (2) described above, it is not a key factor in making a pointer analysis unscalable.
The experimental results in Section 6.2 further validate the scalability of Relay.

Other Context Abstractions for Selective Context Sensitivity. Our current formalism only focuses
on the widely-used method-level selective approaches, i.e., it assumes that the input selective
approaches choose context based on the target method (m in selectCS (m)). Still, the idea of
Unity-Relay also applies to other context abstractions for selective context sensitivity. For example,
introspective analysis [Smaragdakis et al. 2014] selects context based on call sites (i.e., different
context-sensitivity variants for different call sites). To support such a selective approach, we only
need to change the input domain of selectCS to further include call sites, and the context selection
policy of Unity-Relay remains the same. As another alternative, Lu and Xue [2019] select context
on a per-variable basis. The Unity-Relay idea applies seamlessly, but at the granularity of variables,
not methods, i.e., one should see the circles in Figures 2 and 3 as selected variables.

5 BATON

As a proof-of-concept, we introduce Baton, an instantiation of the Unity-Relay framework. Given
plenty of existing selective context sensitivity approaches [Hassanshahi et al. 2017; Jeon et al. 2019;
Jeong et al. 2017; Li et al. 2018a,b, 2020; Lu and Xue 2019; Minseok Jeon and Oh 2020; Oh et al. 2014,
2015; Smaragdakis et al. 2014; Wei and Ryder 2015], the design space of Unity-Relay is large. For
more precision improvement, the chosen approaches should be diverse so that they could cover
precision-useful methods from different perspectives; and they should exhibit good scalability, as
explained in Section 3.3. Accordingly, Baton considers three such approaches as inputs: one ad-hoc
approach based on expert experience, called Collection [WALA 2018], and two state-of-the-art
approaches, called Zippere [Li et al. 2020] and Scaler [Li et al. 2018b].

Collection (or container) methods are important to pointer analysis, as a huge amount of objects
may flow to and are merged in them, if the collection is not being analyzed context-sensitively.
Thus, in pointer analysis frameworks such asWala [WALA 2018], the experts provide an option to
analyze only collection methods (in JDK) context-sensitively for good precision (with also good
scalability). Inspired by [WALA 2018], in Collection, we apply 3obj to the collection methods
whose declaring classes implement interfaces java.util.Collection and java.util.Map in both
application and library code.
Zippere (short for Zipper express) [Li et al. 2020] is a variant of a selective approach called

Zipper [Li et al. 2018a] which identifies precision-useful methods based on principled precision-loss
patterns [Li et al. 2020]. By exploiting the patterns, Zippere adopts simple but effective heuristics
to further exclude the scalability-threat methods. As a result, by applying 2obj only to the finally

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:16 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

selected methods (with the others being analyzed context-insensitively), compared to Zipper,
Zippere substantially improves efficiency with similar precision.
Scaler [Li et al. 2018b] leverages the object allocation graph in [Tan et al. 2016] to estimate

the context-sensitive points-to sizes that would be needed for each method. Then it selects an
appropriate context-sensitivity variant (2obj, 2type, 1type or CI) for each method, while keeping
the overall points-to size bounded (to a quantity that represents the memory capacity available for
running the analysis), resulting in good scalability.
For a given program P, Baton applies the above three approaches to analyze P to obtain their

context-sensitivity variants selected for each method of P. Based on these results, Baton produces
new context-sensitivity configurations according to the Unity and Relay principles. In particular,
in Relay, we run Collection, Zippere and Scaler in this order. We switch between Relay-o1 and
Relay-o2, choosing the more precise option (Relay-o1) if it scales, per the discussion of Section 3.

As all context-sensitivity variants selected by Collection, Zippere and Scaler are comparable
in precision, by Theorems 4.3 and 4.6, we can expect Baton to yield more precise results than all
of them in practice. This will be further validated in Section 6.

6 EVALUATION

This section examines how Baton performs when addressing the challenging research problem
raised in Section 1: “Given reasonably long time, can we achieve precise pointer analysis results for
hard-to-analyze programs, for which traditional context-sensitive analyses fail to scale, and selective
context-sensitive approaches scale but with limited precision?”. We investigate the following
research questions:

RQ1. Given that Baton (Unity) picks the “most precise configuration” based on the input
selective approaches, how does this design scale for hard-to-analyze programs in practice?
How does it fare against state-of-the-art analyses in terms of the precision gain that we aim
for?

RQ2. In the cases for which Baton (Unity) fails to scale, how does Baton (Relay), as the
second punch of Unity-Relay, perform in terms of scalability and precision?

Experimental Settings. We conduct all experiments on a machine with an Intel Xeon 2.2GHz CPU
and 128GB of memory. All pointer analyses are performed on Doop [Bravenboer and Smaragdakis
2009], the state-of-the-art pointer analysis framework for Java (with the version published as
the artifact of [Smaragdakis et al. 2014]). All pointer analyses adopt the same reflection handling
configuration for the same program. Specifically, for each program, we first run the dynamic
reflection analysis tool TamiFlex [Bodden et al. 2011] and its results are used if TamiFlex analyzes
the program successfully; otherwise (if TamiFlex throws exceptions), we use Doop’s default
reflection analysis setting. Time budget is set to 2 hours for each analysis. In evaluation, all
benchmarks are analyzed with a large Java library: OpenJDK 1.6.0_24, which is widely used in
recent work [Jeon et al. 2019, 2018; Li et al. 2018a, 2020; Minseok Jeon and Oh 2020].

Hard-to-analyze Programs. We consider 13 large and complex Java programs as our benchmarks,
including all the hard-to-analyze programs in the standard DaCapo benchmarks [Blackburn et al.
2006] and recent literature for Java pointer analysis [Jeon et al. 2019, 2018; Jeong et al. 2017; Kastrinis
and Smaragdakis 2013; Li et al. 2018b, 2020; Minseok Jeon and Oh 2020; Smaragdakis et al. 2014],
for which traditional 2obj fails to scale within time budget (2 hours). To our knowledge, this is the
largest set of hard-to-analyze programs evaluated in related literature.

Precision Metrics. To thoroughly measure precision, we consider the most complete set of preci-
sion metrics that were used in recent literature [Jeon et al. 2019, 2018; Jeong et al. 2017; Kastrinis and

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:17

Smaragdakis 2013; Li et al. 2018a,b, 2020; Lu and Xue 2019; Minseok Jeon and Oh 2020; Smaragdakis
et al. 2014]. It consists of three general precision metrics, i.e., the total size of points-to sets for all
variables (VarPts), the average size of points-to set per variable (AvgPts), and the number of all
may-alias variable pairs (Aliases); and four independently useful client analyses that are often
adopted in the literature to measure precision. The clients include a cast-resolution analysis (with
the metric being the number of cast operations that may fail, denoted FCasts), a devirtualization
analysis (with the metric being the number of virtual call sites that may have multiple call targets,
denoted PCalls), a method reachability analysis (with the metric being the number of reachable
methods, denoted RMtds), and a call-graph construction analysis (with the metric being the number
of call graph edges, denoted CEdges).

State of the art. The nature of Unity-Relay enables Baton to take advantage of the precision
achieved by any selective approach (as input), thereby whatever the state-of-the-art is, Baton can
achieve practically better precision (Theorems 4.3 and 4.6). In this context, we compare against
two state-of-the-art selective approaches, Zippere [Li et al. 2020] and Scaler [Li et al. 2018b]
(also adopted by Baton as inputs in Section 5), to evaluate how much more precision Baton can
achieve. Zippere and Scaler are open-source tools that try to maximize the precision while not
threatening scalability, and have been demonstrated to be significantly more precise than other
selective approaches [Smaragdakis et al. 2014]. We do not consider Zipper [Li et al. 2018a] as it
fails to scale for all our benchmarks.

6.1 RQ1. Precision and Scalability of Baton (Unity).

For Zippere and Scaler, we use their default configurations as in Li et al. [2018b, 2020], which are
well-tuned and achieve good precision and efficiency trade-offs. As part of Baton, we also include
Collection for comparison. To provide a sense of how precise the pointer analyses (guided by
these selective approaches) are, we consider CI as a baseline.

Figure 7 shows graphically the precision improvement for a single metric: Aliases (i.e., may-alias
variable pairs). Table 1 presents the results for all analyses, in full detail. For each program, there
are five rows of data, corresponding to the five analyses evaluated. Columns 3–9 list the seven
precision metrics explained above, and the rightmost column shows the analysis time in seconds.
Note that Zippere , Scaler and Baton (Unity) require a pre-analysis to select contexts, however,
these computations are very fast (from seconds to minutes) and are negligible compared to pointer
analysis time, thus the pre-analysis time is elided in our evaluation. Next, we examine the detailed
results in Table 1. For all numbers in the table, lower is better.

Precision. From Table 1, we can see that Zippere , Scaler and Collection are much more precise
than CI. For Baton (Unity), as expected, it achieves better precision than all these three analyses for
all precisionmetrics for all programs in Table 1. This result also validates Theorem 4.3. The precision
improvements are significant in general, and are striking for some programs such as hsqldb and
heritrix. Considering that the compared analyses are already highly precise, such precision
improvements made by Baton (Unity) are impressive. Baton (Unity) performs well especially for
VarPts, AvgPts and Aliases, which are the most important outputs of pointer analysis, necessary
for numerous clients. The precision improvements for PCalls and RMtds are not as remarkable
as other metrics. Actually, existing work has shown that the precision improvement of a pointer
analysis has less impact on these two clients compared to others [Kastrinis and Smaragdakis 2013].
This can also be observed in the experimental results from recent selective context-sensitive pointer
analysis work [Jeon et al. 2019; Jeong et al. 2017; Li et al. 2020]. Finally, due to high precision, Baton
(Unity) can avoid spending time on propagating many spurious data flows. Thus, sometimes, it
can run even faster than individual analyses (Collection, Zippere or Scaler) as discussed below.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:18 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

Table 1. Precision and performance metrics for context-insensitive (CI) and selective context-sensitive pointer

analyses guided by Collection, Zipper
e
, Scaler, and Baton (Unity) respectively. For all numbers, lower is

better.

Program Analysis VarPts AvgPts Aliases FCasts PCalls RMtds CEdges Time (s)

hsqldb

CI 5,120,447 53.4 54,502,418 1,662 1,592 11,486 63,790 59
Collection 2,239,445 24.2 25,676,463 1,342 1,343 10,995 56,426 69

Zippere 1,110,244 12.5 8,650,411 1,032 1,261 10,440 51,261 119
Scaler 1,062,721 11.8 12,096,236 1,120 1,197 10,639 52,063 357

Baton (Unity) 738,878 8.4 6,905,176 842 1,145 10,304 49,864 450

galleon

CI 61,536,682 224.6 774,840,941 5,063 7,046 31,137 195,026 571
Collection 21,484,100 80.9 338,974,351 3,647 6,071 30,038 164,764 1,012

Zippere 25,881,909 97.8 330,526,330 3,923 5,903 29,786 165,085 583
Scaler 28,084,055 105.2 383,443,213 3,739 6,175 30,194 167,957 4,697

Baton (Unity) 7,831,380 31.5 110,490,509 3,023 5,458 28,138 139,979 533

jedit

CI 16,874,067 98.0 224,287,546 3,382 4,749 21,006 118,426 104
Collection 3,895,227 23.1 66,401,696 2,516 4,152 20,562 99,574 79

Zippere 3,588,763 21.4 59,605,295 2,304 4,065 20,418 98,290 100
Scaler 3,583,465 21.3 61,720,584 2,377 3,990 20,499 97,999 1,580

Baton (Unity) 3,140,272 18.8 52,291,827 2,098 3,895 20,340 96,872 2,028

soot

CI 110,901,529 365.2 2,006,757,243 16,570 16,532 32,459 415,476 1,013
Collection 31,431,433 105.1 744,789,961 10,296 14,765 31,952 367,708 1,221

Zippere 33,832,881 113.1 859,999,654 10,673 14,666 31,965 326,092 797
Scaler 34,952,536 116.8 817,587,505 10,549 14,822 31,982 374,877 1,257

Baton (Unity) 24,080,734 80.7 579,686,802 9,483 14,499 31,878 308,306 574

gruntspud

CI 23,261,792 112.6 301,389,233 3,583 5,703 24,887 148,874 171
Collection 8,099,569 40.1 103,258,215 2,636 4,820 24,210 120,835 137

Zippere 7,670,883 38.2 104,660,677 2,549 4,739 24,117 120,316 288
Scaler 7,577,272 37.6 100,355,028 2,479 4,699 24,207 120,177 2,761

Baton (Unity) 6,275,349 31.4 81,988,438 2,096 4,572 23,992 116,842 3,254

heritrix

CI 19,576,304 120.3 208,124,549 2,514 3,264 18,820 117,551 198
Collection 6,268,412 41.0 71,227,109 1,628 2,553 17,549 94,501 217

Zippere 7,179,587 47.2 78,727,889 1,734 2,501 17,419 96,633 348
Scaler 7,106,210 46.7 80,018,315 1,637 2,461 17,461 94,785 2,601

Baton (Unity) 2,546,396 17.7 20,679,819 1,200 2,182 16,428 82,301 847

pmd

CI 7,713,272 57.8 86,502,490 2,948 4,183 15,254 104,457 67
Collection 2,765,814 21.1 28,677,101 2,237 3,684 14,967 94,750 74

Zippere 2,760,540 21.1 29,809,145 2,153 3,634 14,908 93,516 386
Scaler 2,410,883 18.4 28,460,705 2,176 3,536 14,895 92,775 697

Baton (Unity) 2,141,253 16.5 24,976,066 1,956 3,463 14,803 91,762 3,602

jython

CI 16,581,997 157.7 183,658,141 2,234 2,778 12,718 114,856 108
Collection 13,281,462 131.5 148,452,466 1,901 2,572 12,205 107,903 152

Zippere 12,948,335 129.8 142,634,911 1,781 2,486 12,026 107,113 134
Scaler 13,016,241 129.1 134,214,889 1,852 2,500 12,167 107,410 459

Baton (Unity) 12,687,718 127.3 129,984,727 1,719 2,438 11,997 106,645 773

jasperreports

CI 73,783,904 276.9 586,687,036 5,305 7,060 33,019 187,173 577
Collection 14,935,335 59.9 151,406,154 3,501 5,544 30,774 152,250 627

Zippere 32,834,048 126.5 258,484,882 4,202 6,083 32,044 167,340 1,043
Scaler 19,025,792 75.9 176,489,911 3,615 5,577 30,904 154,745 1,551

Baton (Unity) 6,453,254 26.5 74,908,878 2,994 5,267 30,008 142,256 834

eclipse

CI 24,841,670 123.4 261,199,033 4,190 9,197 20,862 161,222 136
Collection 11,366,316 57.4 70,520,064 3,266 8,657 20,523 146,770 122

Zippere 11,848,840 59.8 90,933,963 3,223 8,599 20,499 148,037 3,052
Scaler 11,117,708 56.4 73,208,882 3,211 8,486 20,374 145,953 680

Baton (Unity) 9,817,684 50.4 62,570,596 2,834 8,352 20,142 143,503 5,965

briss

CI 34,335,976 136.6 370,495,823 4,904 6,297 26,582 176,785 233
Collection 9,454,391 38.7 101,712,404 3,416 5,373 25,706 153,414 151

Zippere 8,202,040 33.7 85,183,405 3,158 5,306 25,537 151,550 217
Scaler 9,294,471 38.1 101,195,279 3,428 5,323 25,652 152,761 1,265

Baton (Unity) 7,653,188 31.5 79,503,155 2,955 5,147 25,473 150,749 1,726

columba

CI 86,528,734 336.2 745,538,811 4,889 6,669 31,476 195,930 771
Collection 8,837,513 41.8 109,500,746 2,842 4,774 25,709 122,187 218

Zippere 21,510,036 100.4 264,213,761 3,444 5,213 26,051 140,637 837
Scaler 9,986,400 47.2 122,951,398 2,897 4,799 25,729 123,330 295

Baton (Unity) 6,658,750 32.1 85,365,064 2,393 4,522 25,157 118,803 358

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:19

2
5
,6
7
6,
4
63

3
3
8
,9
7
4
,3
5
1

6
6
,4
0
1,
6
96

7
4
4
,7
8
9
,9
6
1

1
0
3
,2
5
8
,2
15

7
1
,2
2
7
,1
0
9

8
,6
5
0
,4
1
1

3
3
0
,5
2
6
,3
30

5
9
,6
0
5
,2
9
5

8
5
9
,9
9
9
,6
54

1
0
4
,6
6
0
,6
7
7

7
8
,7
2
7,
8
89

1
2
,0
9
6,
2
36

3
8
3
,4
4
3
,2
1
3

6
1
,7
2
0,
5
84

8
1
7
,5
8
7
,5
0
5

1
0
0
,3
5
5
,0
28

8
0
,0
1
8
,3
1
5

6
,9
0
5
,1
7
6

1
1
0
,4
9
0
,5
09

5
2
,2
9
1
,8
2
7

5
7
9
,6
8
6
,8
02

8
1
,9
8
8
,4
3
8

2
0
,6
7
9,
8
19

0%

20%

40%

60%

80%

100%

hsqldb galleon jedit soot gruntspud heritrix

2
8

,6
7

7,
1

01

1
4

8
,4

52
,4

66

1
5

1
,4

06
,1

54

7
0

,5
2

0,
0

64

1
0

1
,7

12
,4

04

1
0

9
,5

0
0

,7
4

6

2
9

,8
0

9,
1

45

1
4

2
,6

34
,9

11

2
5

8
,4

84
,8

82

9
0

,9
3

3,
9

63

8
5

,1
8

3,
4

05

2
6

4
,2

1
3

,7
6

1

2
8

,4
6

0,
7

05

1
3

4
,2

14
,8

89

1
7

6
,4

89
,9

11

7
3

,2
0

8,
8

82

1
0

1
,1

95
,2

79

1
2

2
,9

51
,3

98

2
4

,9
7

6,
0

66

1
2

9
,9

84
,7

27

7
4

,9
0

8,
8

78

6
2

,5
7

0,
5

96

7
9

,5
0

3,
1

55

8
5

,3
6

5,
0

64

0%

20%

40%

60%

80%

100%

pmd jython jasperreports eclipse briss columba

Collection Zipper-e Scaler Baton (Unity)COLLECTION ZIPPER
e SCALER BATON (Unity)

Fig. 7. May-alias variable pairs (Aliases), normalized to highest.Baton (Unity) consistently finds a significant
proportion of previously-reported alias pairs to be spurious.

Scalability. Collection, Zippere and Scaler can analyze all 13 programs within time budget,
demonstrating their extremely good scalability. As for Baton (Unity), even though it chooses
the most precise configuration for all methods selected by all approaches in Baton, it is still able
to scale for 12 out of 13 hard-to-analyze programs as shown in Table 1, validating the insights
of Section 3.2. The only exception is h2, which will be handled by Baton (Relay) as shown in
Section 6.2. Although our focus is precision, it is worth pointing out that Baton (Unity) is always
more precise but not always slower. For galleon, heritrix, soot, jasperreports and columba,
Baton (Unity) is faster than at least one of the state-of-the-art systems. For galleon and soot,
Baton (Unity) is even faster than all other analyses including CI! Such surprising performance
advantages stem from the significant precision improvements of Baton (Unity).

6.2 RQ2. Precision and Scalability of Baton (Relay).

We evaluate how Baton (Relay), as the second punch of Baton, performs in practice when Baton
(Unity) is not scalable. With default settings of Zippere and Scaler, Baton (Unity) can scale for
all programs except for h2 (Section 6.1). However, to thoroughly evaluate Baton (Relay), we need
to examine more such cases. Zippere and Scaler are tunable, i.e., they both provide options to tune
the analysis for different precision and efficiency trade-offs. Specifically, Zippere can be configured
by a percentage value, PV, which corresponds to the threshold for identifying scalability-threat

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:20 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

Table 2. Precision and performance metrics for context-insensitive CI and selective context-sensitive pointer

analyses guided by reconfigured Zipper
e
, Scaler, and each pass of Baton (Relay). For all numbers, lower is

better.

Program Analysis VarPts AvgPts Aliases FCasts PCalls RMtds CEdges Time (s)

eclipse

CI 24,841,670 123.4 261,199,033 4,190 9,197 20,862 161,222 136
Zippere 11,848,840 59.8 90,933,963 3,223 8,599 20,499 148,037 3,052
Scaler 10,975,564 55.7 72,760,368 3,170 8,448 20,352 145,412 1,396

Baton-p1 (Relay-o1) 11,366,316 57.4 70,520,064 3,266 8,657 20,523 146,770 122
Baton-p2 (Relay-o1) 10,484,964 53.2 65,384,654 3,003 8,534 20,426 145,849 3,592
Baton-p3 (Relay-o1) 9,865,071 50.7 62,549,586 2,823 8,335 20,127 143,046 3,171

briss

CI 34,335,976 136.6 370,495,823 4,904 6,297 26,582 176,785 233
Zippere 5,966,496 24.6 80,559,736 3,016 5,209 25,440 150,826 1,899
Scaler 8,830,552 36.4 97,300,729 3,298 5,190 25,541 151,224 4,706

Baton-p1 (Relay-o1) 9,454,391 38.7 101,712,404 3,416 5,373 25,706 153,414 151
Baton-p2 (Relay-o1) 5,279,719 21.8 77,196,053 2,918 5,147 25,432 150,621 2,976
Baton-p3 (Relay-o1) 5,178,884 21.4 75,371,504 2,807 5,028 25,378 149,864 6,205

pmd

CI 7,713,272 57.8 86,502,490 2,948 4,183 15,254 104,457 67
Zippere 2,760,540 21.1 29,809,145 2,153 3,634 14,908 93,516 386
Scaler 2,282,726 17.5 26,945,008 2,080 3,498 14,839 92,439 2,230

Baton-p1 (Relay-o1) 2,765,814 21.1 28,677,101 2,237 3,684 14,967 94,750 74
Baton-p2 (Relay-o1) 2,558,733 19.6 26,892,448 2,072 3,616 14,891 93,164 1,827
Baton-p3 (Relay-o1) 2,142,179 16.5 24,966,489 1,958 3,462 14,802 91,764 6,164

jedit

CI 16,874,067 98.0 224,287,546 3,382 4,749 21,006 118,426 104
Zippere 2,771,120 16.6 51,199,984 2,148 3,937 20,350 96,946 3,055
Scaler 3,059,304 18.3 56,958,326 2,228 3,909 20,386 97,154 1,520

Baton-p1 (Relay-o1) 3,895,227 23.1 66,401,696 2,516 4,152 20,562 99,574 81
Baton-p2 (Relay-o1) 2,627,200 15.7 49,384,180 2,113 3,930 20,346 96,763 3,887
Baton-p3 (Relay-o1) 2,575,332 15.4 48,120,051 2,022 3,845 20,327 96,463 4,347

h2

CI 3,566,057 30.1 66,745,220 1,866 3,946 14,192 95,541 49
Zippere 1,571,052 13.5 26,790,820 1,418 3,646 13,903 89,292 254
Scaler 1,368,866 11.8 26,113,035 1,373 3,605 13,850 88,268 1,832

Baton-p1 (Relay-o1) 1,647,387 14.1 26,677,699 1,523 3,654 13,935 89,361 63
Baton-p2 (Relay-o1) 1,480,200 12.7 22,915,240 1,384 3,632 13,867 88,959 2,284
Baton-p3 (Relay-o2) 1,238,765 10.7 22,264,106 1,303 3,593 13,821 88,027 2,004

gruntspud

CI 23,261,792 112.5 301,389,233 3,583 5,703 24,887 148,874 171
Zippere 5,601,249 28.0 79,231,338 2,232 4,629 24,010 116,972 1,370
Scaler 6,928,500 34.4 99,005,787 2,470 4,671 24,166 119,136 4,546

Baton-p1 (Relay-o1) 8,099,569 40.1 103,258,215 2,636 4,820 24,210 120,835 137
Baton-p2 (Relay-o2) 5,525,251 27.6 78,100,575 2,199 4,625 24,001 116,892 1,456
Baton-p3 (Relay-o2) 5,356,169 26.8 76,524,253 2,113 4,541 23,973 116,558 3,962

methods, and Scaler is parameterized by a number called total scalability threshold (TST), which
corresponds to a bound on the overall points-to size. For both analyses, using higher thresholds (PV
and TST) would generally improve precision but reduce efficiency. Thus, we change their settings
in Baton by increasing PV and TST, to make them more precise, and accordingly, more expensive,
until Baton (Unity) no longer scales but each individual selective approach can still terminate
within the time budget for all the programs in Table 1.

As a result, Table 2 shows six programs that fulfill our experimental requirements. As the baseline,
CI is still included. The results of Collection are the same as the ones of Baton-p1 (Relay-o1)
(since Baton (Relay) runs Collection in its first pass as described in Section 5), thus we use the
latter to represent Collection. For each program, we list the analysis results of the reconfigured
Zippere , Scaler, and the three passes (Section 5) of the accordingly-reconfigured Baton (Relay).

Precision. Theorem 4.6 proves that the last pass of Relay is more precise than any individual
selective approach in the framework, and Table 2 validates this in practice: Baton (Relay) obtains
better precision than Zippere and Scaler (and also Collection) for all precision metrics for all
programs. Figure 8 shows graphically the precision improvement for the Aliases metric.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:21

7
0

,5
2

0
,0

6
4

1
0

1
,7

1
2

,4
0

4

2
8

,6
7

7
,1

0
1

6
6

,4
0

1
,6

9
6

2
6

,6
7

7
,6

9
9

1
0

3
,2

5
8

,2
1

5

9
0

,9
3

3
,9

6
3

8
0

,5
5

9
,7

3
6

2
9

,8
0

9
,1

4
5

5
1

,1
9

9
,9

8
4

2
6

,7
9

0
,8

2
0

7
9

,2
3

1
,3

3
8

7
2

,7
6

0
,3

6
8

9
7

,3
0

0
,7

2
9

2
6

,9
4

5
,0

0
8

5
6

,9
5

8
,3

2
6

2
6

,1
1

3
,0

3
5

9
9

,0
0

5
,7

8
7

6
2

,5
4

9
,5

8
6

7
5

,3
7

1
,5

0
4

2
4

,9
6

6
,4

8
9

4
8

,1
2

0
,0

5
1

2
2

,2
6

4
,1

0
6

7
6

,5
2

4
,2

5
3

0%

20%

40%

60%

80%

100%

eclipse briss pmd jedit h2 gruntspud

Collection Zipper-e Scaler Baton (Relay)COLLECTION ZIPPER
e SCALER BATON (Relay)

Fig. 8. May-alias variable pairs (Aliases), normalized to highest. Baton (Relay) consistently improves over

the best past algorithm. Importantly, the best algorithm varies per benchmark. On average, Baton (Relay)
improves the precision of Collection, Zipper

e
, and Scaler by 20%, 13% and 16% respectively.

We can also observe from Table 2 that Baton (Relay) improves the precision in a stable, cumula-
tive way, pass after pass (Baton-p1, -p2 and -p3). For 4 out of 6 programs, the precision achieved
by the second pass of Baton (Relay), i.e., Baton-p2, already outperforms the other analyses.

Scalability. For all six programs in Table 2, for which the reconfigured Baton (Unity) fails to
scale, Baton (Relay) is scalable, by dividing the scalability burden of Baton (Unity) into different
passes. The beneficial effects of on-the-fly filtering, based on the results of the previous pass, can be
seen in the experiment. For instance, one can observe that, for gruntspud, Baton-p3 (Relay-o2)
spends 3,962s when the corresponding Scaler analysis requires 4,546s. This is entirely due to the
precision transmitted from passes 1 and 2, which can help filter many spurious object flows during
the analysis of pass 3, making the analysis reach fixed point more quickly. Although the purpose of
filtering is to improve precision, and not scalability, when the time saved by the improved precision
exceeds the time cost of filtering itself, such results arise.

Pass Ordering. We conduct further experiments to examine whether the pass ordering of Relay
affects precision and scalability. The present Relay runs Collection, Zippere and Scaler, in this
order, for each pass. In the extra experiments, we have two new orderings: (1) Collection, Scaler
and Zippere and (2) Scaler, Zippere and Collection. We run Relay for all the programs in Table 2
under these two orderings. For scalability, as expected, Relay-o2 is still able to scale for all the
programs, keeping its scalability promise. For Relay-o1, the Scaler-related pass fails to scale for
briss under the new orderings: the context-sensitivity configuration in Relay-o1 for Scaler is
relatively expensive in terms of analysis efficiency, but when running Zippere before Scaler, as
in the original ordering, the former helps prune away many spurious objects, which makes the
latter more scalable by reaching fixed point faster. This instance suggests that a pass ordering with
relatively fast and precise analyses placed first can lead to a more scalable Relay-o1, thus avoiding
the fallback to the less-precise Relay-o2. Again, the pass ordering does not affect the scalability
capacity of Relay-o2, as explained in Section 4.4, and validated above.

For precision, as expected, Relay outperforms the other analyses in all precision metrics under
both new orderings. (For the aforementioned briss case, note the fallback to Relay-o2.) This
further validates the Relay precision guarantee. Regarding the final precision produced by Relay
under the original and the two new orderings, although one may perform better than the others for

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:22 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

different programs, the precision difference among them is very minor: less than 0.1% on average.
Therefore, although the pass ordering may affect the final precision of Relay, as explained in
Section 3.3, the experimental results show that such impact is very minor in practice. (The precision
guarantee of Relay proved in Theorem 4.6 remains unaffected.)

Other Choices for Precision Improvements. When Baton (Unity) fails to scale, one may wonder
whether some other schemes are better choices than Relay for improving precision. This may
include: (1) downgrading the context-sensitivity variants for the overlapped methods reported by
Zippere , Scaler andCollection (e.g., choose the faster 2type rather than 2obj if both are reported),
(2) simply intersecting the points-to results produced by Zippere , Scaler and Collection, and (3)
further tuning Zippere or Scaler for better precision by increasing their provided thresholds.

We conduct further experiments and find that none of the above schemes is better than Baton
(Relay) for improving precision. For (1), this scheme still fails to scale for jedit, and for the
remaining 5×7=35 precision metrics, Baton (Relay) outperforms it in almost all (33 out of 35) cases.
For (2), Baton (Relay) achieves better precision for all 42 metrics. For (3), when increasing the
current threshold of Zippere (used in Table 2) by only 1%, (e.g., from 16% to 17% for gruntspud),
Zippere is already not scalable for several programs; when increasing the threshold of Scaler
from current 60M to a high value 100M, Scaler generally becomes significantly slower (e.g., 6,856s
for briss), but Baton (Relay) (with the current 60M) still outperforms it in precision for virtually
all (40 out of 42) metrics. Most importantly, no matter how precise an input selective approach
becomes, Baton (Relay) can always leverage it for better precision.

7 RELATEDWORK

To our knowledge, Unity-Relay is the first technique that systematically exploits and leverages
multiple selective context-sensitivity approaches for yielding high precision for Java pointer analysis.
As experimental results show, Unity-Relay is able to produce a pointer analysis with a precision
that is well beyond existing approaches for hard-to-analyze programs. Although the ideas of Unity
and Relay have not been applied to pointer analysis before, for Relay, the high-level idea of its
precision filtering is similar to the reduced product approach in abstract interpretation [Cousot and
Cousot 1979]: different domains (e.g., an integer interval domain and a parity domain) can be used
to improve the precision of another in one analysis; however, in Relay, there is only one domain
(the mapping from pointers to heap objects) and the precision filtering process is divided into
multiple analyses (passes). The high-level idea of staged analyses in Relay has also been adopted
in static analysis, e.g., in staged verification [Fink et al. 2008], faster verifiers run in early stages
which reduce the workload for later, more precise, stages; however, in Relay, neither the time cost
nor the precision of the analysis in each stage are comparable. Relay is also different in how it
utilizes the results from a previous stage to incorporate with the analysis in a later stage. (Such
handling also differs from staged optimization [Philipose et al. 2002].) Thus, although Relay shares
some similarities with the high-level ideas of previous work, technical specifics are different.
We have discussed Zippere [Li et al. 2020], Scaler [Li et al. 2018b] and Collection [WALA

2018] in Section 5. Below we review other related work about selective context-sensitive pointer
analysis.
Oh et al. [2014] present a principled approach to resolving given queries for C programs by

selective context sensitivity. In particular, the approach uses a pre-analysis to estimate the impact
of context sensitivity on the precision of the subsequent main analysis. In Oh et al. [2015], this
approach is extended to include selective flow sensitivity by following the same principle to
demonstrate its generality.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:23

Smaragdakis et al. [2014] introduce introspective analysis, which relies on several manually-
selectedmetrics (e.g., the maximum field points-to set per object) to define heuristics for determining
which methods are supposed to be analyzed context-sensitively. Similar parameterized heuristics
are also leveraged by Hassanshahi et al [Hassanshahi et al. 2017] to decide whether object sensitivity
should be applied to certain methods.

Like Scaler [Li et al. 2018b], context elements may also vary for different methods in the work
of Wei and Ryder [2015] and Thakur and Nandivada [2020]. Differently, inWei and Ryder [2015], the
relationship between context-sensitivity variants and methods is obtained by a machine-learning
approach and domain knowledge. In the work of Thakur and Nandivada [2020], object sensitivity
is further added to the methods that have been assigned call-site sensitivity, in a special form of
context abstraction proposed earlier by Thakur and Nandivada [2019].

Data-driven approaches [Jeon et al. 2019; Jeong et al. 2017] assign to each method an appropriate
context length by learning heuristics based on various program elements (e.g., some Java keywords
or specific statements) expressed in a disjunctive form. Although the learning phase is relatively
heavy, it helps in making good precision and efficiency trade-offs for pointer analysis. However, as
well-known weaknesses, machine-learning approaches may behave unpredictably for new inputs,
and their learned results, although useful, are usually difficult to explain. Still, this does not prevent
the ability of Unity-Relay to take advantage of learned results (based on opaque insights from
machine-learning algorithms) to gain good precision, just as it can for any other individual selective
approach.
Lu and Xue [2019] present a scheme to selectively apply context sensitivity on the granularity

of variables (rather than methods) based on CFL-reachability [Reps 1997]. The general idea of
Unity-Relay also works for this granularity by considering which portion of a program should be
analyzed by what context-sensitivity variants at the variable level (see the circles in Figures 2 and 3
as selected variables).
It is worth pointing out that Unity-Relay is not in competition with the above approaches,

but instead complements them by taking advantages of their insights (through consuming their
outputs) to yield more precise results.
When we understand selective context sensitivity more generally as “applying context sensi-

tivity discriminately, in order to save analysis cost” it becomes similar to ideas also explored in
demand/client-driven pointer analyses [Guyer and Lin 2003; Liang and Naik 2011; Liu et al. 2019;
Späth et al. 2019; Späth et al. 2016; Sridharan and Bodík 2006; Sridharan et al. 2005; Sui and Xue
2016; Wang et al. 2017; Zhang et al. 2014]: these reduce the analysis cost by computing only the
results which are necessary to answer specific queries at given program locations.

8 CONCLUSIONS

Pointer analysis is hard to scale with good precision for large and complex Java programs. This
challenge needs to be urgently addressed, as such programs dominate real practice. To address the
problem, we present the simple and practical Unity-Relay framework for systematically exploiting
a set, S , of selective context-sensitivity approaches, to produce highly-precise pointer analysis
results for hard-to-analyze Java programs. Its first punch, Unity, fully unleashes the precision
potential of all approaches in S with good scalability. When Unity fails, the second punch, Relay,
can be confidently relied upon to reap precision in a stable and accumulative way. Unity-Relay
has soundness and precision guarantees relative to the individual selective approaches it combines.
Furthermore, if each approach in S is scalable, users can expect that Unity-Relay is also able
to scale by its last defender of scalability, Relay-o2: a technique guaranteed to (at worst) match
the scalability profile of individual approaches in S . We validate these properties in practice via
extensive experiments in Section 6.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

147:24 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

The Unity-Relay proof-of-concept tool, Baton, has been demonstrated to be very effective:
Baton achieves the best precision for all precision metrics and clients for all evaluated programs.
It is the first time that these levels of precision are obtained for these hard-to-analyze programs.
Baton is merely one instantiation of the Unity-Relay framework. In the future, we expect

more instantiations to unleash the power of more effective selective context-sensitivity approaches
(including ones not yet foreseen).

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments. This work was supported in part
by Key-Area Research & Development Program of Guangdong Province (Grant #2020B010164003),
Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant #BK20202001),
and National Natural Science Foundation of China (Grants #61932021, #62025202, #62002157), and
by the Hellenic Foundation for Research and Innovation (project DEAN-BLOCK). The authors
would also like to thank the support from the Collaborative Innovation Center of Novel Software
Technology and Industrialization, Jiangsu, China.

REFERENCES

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick D. McDaniel. 2014. FlowDroid: precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for Android apps. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 259–269.
https://doi.org/10.1145/2594291.2594299

Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khan, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan,
Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony L. Hosking, Maria Jump, Han Bok Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006.
The DaCapo benchmarks: Java benchmarking development and analysis. In Proceedings of the 21th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006,
Portland, Oregon, USA, Peri L. Tarr and William R. Cook (Eds.). ACM, 169–190. https://doi.org/10.1145/1167473.1167488

Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011. Taming reflection: Aiding static analysis
in the presence of reflection and custom class loaders. In Proceedings of the 33rd International Conference on Software
Engineering, ICSE 2011, Waikiki, Honolulu, HI, USA, May 21-28, 2011. 241–250. https://doi.org/10.1145/1985793.1985827

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly declarative specification of sophisticated points-to analyses.
In Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, Shail Arora and Gary T. Leavens (Eds.). ACM,
243–262. https://doi.org/10.1145/1640089.1640108

Satish Chandra, Stephen J. Fink, and Manu Sridharan. 2009. Snugglebug: a powerful approach to weakest preconditions. In
Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2009, Dublin,
Ireland, June 15-21, 2009, Michael Hind and Amer Diwan (Eds.). ACM, 363–374. https://doi.org/10.1145/1542476.1542517

Maria Christakis and Christian Bird. 2016. What developers want and need from program analysis: an empirical study.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016, Singapore,
September 3-7, 2016, David Lo, Sven Apel, and Sarfraz Khurshid (Eds.). ACM, 332–343. https://doi.org/10.1145/2970276.
2970347

Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In Proceedings of the 6th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (San Antonio, Texas) (POPL ’79). Association
for Computing Machinery, New York, NY, USA, 269âĂŞ282. https://doi.org/10.1145/567752.567778

Pratik Fegade and Christian Wimmer. 2020. Scalable Pointer Analysis of Data Structures Using Semantic Models. In
Proceedings of the 29th International Conference on Compiler Construction (San Diego, CA, USA) (CC 2020). Association
for Computing Machinery, New York, NY, USA, 39âĂŞ50. https://doi.org/10.1145/3377555.3377885

Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. 2015. Bottom-Up Context-Sensitive Pointer Analysis for Java. In
Programming Languages and Systems, Xinyu Feng and Sungwoo Park (Eds.). Springer International Publishing, Cham,
465–484.

Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. 2008. Effective Typestate Verification in the
Presence of Aliasing. ACM Trans. Softw. Eng. Methodol. 17, 2, Article 9 (May 2008), 34 pages. https://doi.org/10.1145/
1348250.1348255

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1542476.1542517
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/567752.567778
https://doi.org/10.1145/3377555.3377885
https://doi.org/10.1145/1348250.1348255
https://doi.org/10.1145/1348250.1348255

147:25

Samuel Z. Guyer and Calvin Lin. 2003. Client-Driven Pointer Analysis. In Proceedings of the 10th International Conference on
Static Analysis (San Diego, CA, USA) (SAS’03). Springer-Verlag, Berlin, Heidelberg, 214âĂŞ236.

Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan, Bernhard Scholz, and Yi Lu. 2017. An
efficient tunable selective points-to analysis for large codebases. In Proceedings of the 6th ACM SIGPLAN International
Workshop on State Of the Art in Program Analysis, SOAP@PLDI 2017, Barcelona, Spain, June 18, 2017, Karim Ali and
Cristina Cifuentes (Eds.). ACM, 13–18. https://doi.org/10.1145/3088515.3088519

Minseok Jeon, Sehun Jeong, Sungdeok Cha, and Hakjoo Oh. 2019. AMachine-Learning Algorithmwith Disjunctive Model for
Data-Driven Program Analysis. ACM Trans. Program. Lang. Syst. 41, 2 (2019), 13:1–13:41. https://doi.org/10.1145/3293607

Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and Scalable Points-to Analysis via Data-driven Context Tunneling.
Proc. ACM Program. Lang. 2, OOPSLA, Article 140 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276510

Sehun Jeong, Minseok Jeon, Sung Deok Cha, and Hakjoo Oh. 2017. Data-driven context-sensitivity for points-to analysis.
PACMPL 1, OOPSLA (2017), 100:1–100:28. https://doi.org/10.1145/3133924

Vini Kanvar and Uday P. Khedker. 2016. Heap Abstractions for Static Analysis. ACM Comput. Surv. 49, 2, Article 29 (June
2016), 47 pages. https://doi.org/10.1145/2931098

George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-sensitivity for points-to analysis. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, Hans-
Juergen Boehm and Cormac Flanagan (Eds.). ACM, 423–434. https://doi.org/10.1145/2462156.2462191

Ondřej Lhoták and Laurie Hendren. 2008. Evaluating the Benefits of Context-Sensitive Points-to Analysis Using a BDD-Based
Implementation. ACM Trans. Softw. Eng. Methodol. 18, 1, Article 3 (Oct. 2008), 53 pages. https://doi.org/10.1145/1391984.
1391987

Ondrej Lhoták and Laurie J. Hendren. 2006. Context-Sensitive Points-to Analysis: Is It Worth It?. In Compiler Construction,
15th International Conference, CC 2006, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2006, Vienna, Austria, March 30-31, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 3923), Alan Mycroft
and Andreas Zeller (Eds.). Springer, 47–64. https://doi.org/10.1007/11688839_5

Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018a. Precision-guided Context Sensitivity for Pointer Analysis.
Proc. ACM Program. Lang. 2, OOPSLA, Article 141 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276511

Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018b. Scalability-First Pointer Analysis with Self-Tuning Context-
Sensitivity. In Proc. 12th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, 129–140. https://doi.org/10.1145/3236024.3236041

Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2020. A Principled Approach to Selective Context Sensitivity for
Pointer Analysis. ACM Trans. Program. Lang. Syst. 42, 2, Article 10 (May 2020), 40 pages. https://doi.org/10.1145/3381915

Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. 2016. Program Tailoring: Slicing by Sequential Criteria. In 30th Eu-
ropean Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy (LIPIcs, Vol. 56), Shri-
ram Krishnamurthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 15:1–15:27.
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15

Percy Liang and Mayur Naik. 2011. Scaling Abstraction Refinement via Pruning. SIGPLAN Not. 46, 6 (June 2011), 590âĂŞ601.
https://doi.org/10.1145/1993316.1993567

Bozhen Liu, Jeff Huang, and Lawrence Rauchwerger. 2019. Rethinking Incremental and Parallel Pointer Analysis. ACM
Trans. Program. Lang. Syst. 41, 1, Article 6 (March 2019), 31 pages. https://doi.org/10.1145/3293606

Benjamin Livshits and Monica S. Lam. 2005. Finding Security Vulnerabilities in Java Applications with Static Analysis. In
Proceedings of the 14th USENIX Security Symposium, Baltimore, MD, USA, July 31 - August 5, 2005, Patrick D. McDaniel
(Ed.). USENIX Association.

Jingbo Lu and Jingling Xue. 2019. Precision-Preserving yet Fast Object-Sensitive Pointer Analysis with Partial Context
Sensitivity. Proc. ACM Program. Lang. 3, OOPSLA, Article 148 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360574

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2002. Parameterized object sensitivity for points-to and side-effect
analyses for Java. In Proceedings of the International Symposium on Software Testing and Analysis, ISSTA 2002, Roma, Italy,
July 22-24, 2002, Phyllis G. Frankl (Ed.). ACM, 1–11. https://doi.org/10.1145/566172.566174

Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized object sensitivity for points-to analysis for Java.
ACM Trans. Softw. Eng. Methodol. 14, 1 (2005), 1–41. https://doi.org/10.1145/1044834.1044835

Myungho Lee Minseok Jeon and Hakjoo Oh. 2020. Learning Graph-based Heuristics for Pointer Analysis without Hand-
crafting Application-Specific Features. Proc. ACM Program. Lang. OOPSLA (2020).

Mayur Naik, Alex Aiken, and aley. 2006. Effective static race detection for Java. In Proceedings of the ACM SIGPLAN 2006
Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June 11-14, 2006, Michael I.
Schwartzbach and Thomas Ball (Eds.). ACM, 308–319. https://doi.org/10.1145/1133981.1134018

Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective Context-sensitivity Guided
by Impact Pre-analysis. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 475–484. https://doi.org/10.1145/

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

https://doi.org/10.1145/3088515.3088519
https://doi.org/10.1145/3293607
https://doi.org/10.1145/3276510
https://doi.org/10.1145/3133924
https://doi.org/10.1145/2931098
https://doi.org/10.1145/2462156.2462191
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1007/11688839_5
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/3381915
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.1145/1993316.1993567
https://doi.org/10.1145/3293606
https://doi.org/10.1145/3360574
https://doi.org/10.1145/566172.566174
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1133981.1134018
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/2594291.2594318

147:26 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis

2594291.2594318
Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2015. Selective X-Sensitive Analysis Guided by

Impact Pre-Analysis. ACMTrans. Program. Lang. Syst. 38, 2, Article 6 (Dec. 2015), 45 pages. https://doi.org/10.1145/2821504
Matthai Philipose, Craig Chambers, and Susan J. Eggers. 2002. Towards Automatic Construction of Staged Compilers. In

Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Portland, Oregon)
(POPL ’02). Association for ComputingMachinery, New York, NY, USA, 113âĂŞ125. https://doi.org/10.1145/503272.503284

Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. 2012. Statically checking API protocol conformance
with mined multi-object specifications. In 34th International Conference on Software Engineering, ICSE 2012, June 2-9,
2012, Zurich, Switzerland, Martin Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE Computer Society, 925–935.
https://doi.org/10.1109/ICSE.2012.6227127

Thomas Reps. 1997. Program Analysis via Graph Reachability. In Proceedings of the 1997 International Symposium on Logic
Programming (Port Washington, New York, USA) (ILPS ’97). MIT Press, Cambridge, MA, USA, 5âĂŞ19.

Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Foundations and Trends in Programming Languages 2,
1 (2015), 1–69. https://doi.org/10.1561/2500000014

Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your contexts well: understanding object-sensitivity.
In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 17–30. https://doi.org/10.1145/1926385.1926390

Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective analysis: context-sensitivity, across the
board. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 485–495. https://doi.org/10.1145/
2594291.2594320

Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, Flow-, and Field-Sensitive Data-Flow Analysis Using
Synchronized Pushdown Systems. Proc. ACM Program. Lang. 3, POPL, Article 48 (Jan. 2019), 29 pages. https:
//doi.org/10.1145/3290361

Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven Flow- and
Context-Sensitive Pointer Analysis for Java. In 30th European Conference on Object-Oriented Programming (ECOOP 2016)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 22:1–22:26. https://doi.org/10.4230/LIPIcs.
ECOOP.2016.22

Manu Sridharan and Rastislav Bodík. 2006. Refinement-based context-sensitive points-to analysis for Java. In Proceedings of
the ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation, Ottawa, Ontario, Canada, June
11-14, 2006, Michael I. Schwartzbach and Thomas Ball (Eds.). ACM, 387–400. https://doi.org/10.1145/1133981.1134027

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. 2013. Alias Analysis for Object-Oriented
Programs. In Aliasing in Object-Oriented Programming. Types, Analysis and Verification, Dave Clarke, James Noble, and
Tobias Wrigstad (Eds.). Lecture Notes in Computer Science, Vol. 7850. Springer, 196–232. https://doi.org/10.1007/978-3-
642-36946-9_8

Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. 2007. Thin slicing. In Proceedings of the ACM SIGPLAN 2007 Conference
on Programming Language Design and Implementation, San Diego, California, USA, June 10-13, 2007, Jeanne Ferrante and
Kathryn S. McKinley (Eds.). ACM, 112–122. https://doi.org/10.1145/1250734.1250748

Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. 2005. Demand-driven points-to analysis for Java. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, Ralph E. Johnson and Richard P. Gabriel (Eds.).
ACM, 59–76. https://doi.org/10.1145/1094811.1094817

Yulei Sui and Jingling Xue. 2016. On-demand Strong Update Analysis via Value-flow Refinement. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). ACM,
New York, NY, USA, 460–473. https://doi.org/10.1145/2950290.2950296

Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. 2021. Making Pointer Analysis More Precise by Unleashing
the Power of Selective Context Sensitivity (Artifact). https://doi.org/10.5281/zenodo.5491895

Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-Object-Sensitive Pointer Analysis More Precise with Still k-Limiting. In
Static Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings (Lecture Notes
in Computer Science, Vol. 9837), Xavier Rival (Ed.). Springer, 489–510. https://doi.org/10.1007/978-3-662-53413-7_24

Tian Tan, Yue Li, and Jingling Xue. 2017. Efficient and precise points-to analysis: modeling the heap by merging equivalent
automata. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and Martin T. Vechev (Eds.). ACM, 278–291. https://doi.org/
10.1145/3062341.3062360

Manas Thakur and V. Krishna Nandivada. 2019. Compare Less, Defer More: Scaling Value-contexts Based Whole-program
Heap Analyses. In Proceedings of the 28th International Conference on Compiler Construction (Washington, DC, USA) (CC

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/2594291.2594318
https://doi.org/10.1145/2821504
https://doi.org/10.1145/503272.503284
https://doi.org/10.1109/ICSE.2012.6227127
https://doi.org/10.1561/2500000014
https://doi.org/10.1145/1926385.1926390
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/3290361
https://doi.org/10.1145/3290361
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1094811.1094817
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.5281/zenodo.5491895
https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1145/3062341.3062360
https://doi.org/10.1145/3062341.3062360

147:27

2019). ACM, New York, NY, USA, 135–146. https://doi.org/10.1145/3302516.3307359
Manas Thakur and V. Krishna Nandivada. 2020. Mix Your Contexts Well: Opportunities Unleashed by Recent Advances in

Scaling Context-Sensitivity (CC 2020). Association for Computing Machinery, New York, NY, USA, 27âĂŞ38. https:
//doi.org/10.1145/3377555.3377902

Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for Pointer Analysis. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). ACM, New
York, NY, USA, 263–277. https://doi.org/10.1145/3062341.3062359

WALA. 2018. Watson Libraries for Analysis. http://wala.sf.net.
Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan Amiri Sani. 2017. Graspan: A Single-machine Disk-based

Graph System for Interprocedural Static Analyses of Large-scale Systems Code. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and Operating Systems (Xi’an, China)
(ASPLOS ’17). ACM, New York, NY, USA, 389–404. https://doi.org/10.1145/3037697.3037744

Shiyi Wei and Barbara G. Ryder. 2015. Adaptive Context-sensitive Analysis for JavaScript. In 29th European Conference on
Object-Oriented Programming, ECOOP 2015, July 5-10, 2015, Prague, Czech Republic (LIPIcs, Vol. 37), John Tang Boyland
(Ed.). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 712–734. https://doi.org/10.4230/LIPIcs.ECOOP.2015.712

John Whaley and Monica S. Lam. 2004. Cloning-Based Context-Sensitive Pointer Alias Analysis Using Binary Decision
Diagrams. SIGPLAN Not. 39, 6 (June 2004), 131âĂŞ144. https://doi.org/10.1145/996893.996859

Guoqing Xu and Atanas Rountev. 2008. Merging Equivalent Contexts for Scalable Heap-cloning-based Context-sensitive
Points-to Analysis. In Proceedings of the 2008 International Symposium on Software Testing and Analysis (Seattle, WA,
USA) (ISSTA ’08). ACM, New York, NY, USA, 225–236. https://doi.org/10.1145/1390630.1390658

Xin Zhang, Ravi Mangal, Radu Grigore, Mayur Naik, and Hongseok Yang. 2014. On Abstraction Refinement for Program
Analyses in Datalog. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (Edinburgh, United Kingdom) (PLDI ’14). Association for Computing Machinery, New York, NY, USA,
239âĂŞ248. https://doi.org/10.1145/2594291.2594327

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 147. Publication date: October 2021.

https://doi.org/10.1145/3302516.3307359
https://doi.org/10.1145/3377555.3377902
https://doi.org/10.1145/3377555.3377902
https://doi.org/10.1145/3062341.3062359
http://wala.sf.net
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712
https://doi.org/10.1145/996893.996859
https://doi.org/10.1145/1390630.1390658
https://doi.org/10.1145/2594291.2594327

	Abstract
	1 Introduction
	2 Background
	3 The Unity-Relay Framework, Informally
	3.1 Overview
	3.2 Unity
	3.3 Relay

	4 Formalism and Properties
	4.1 Domain and Notations
	4.2 Selective Context-Sensitive Pointer Analysis
	4.3 Unity
	4.4 Relay

	5 Baton
	6 Evaluation
	6.1 RQ1. Precision and Scalability of Baton (Unity).
	6.2 RQ2. Precision and Scalability of Baton (Relay).

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

