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Abstract

Pseudospectra were introduced as early as 1975 and became popular tool during the
1990s.In this paper, we give a new definition of pseudospectra by using QR decomposition.
Some properties of pseduospectra are explored and an algorithm for the computation of
pseduospectra is given.
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1 Introduction

Let A be an m× n matrix with m ≥ n. An eigenvalue of the matrix A might be defined by the
condition

(A− λĨ)ν = 0, (1.1)

for some nonzero n-vector ν, where Ĩ denotes the m× n ’identity’ with 1 on the main diagonal
and 0 elsewhere. If (λ, ν) satisfies (1.1), then we have

(
A1 − λIn

A2

)
ν = 0,

where A1 denotes the n× n upper part of A. Hence not only (λ, ν) must be an eigenpair of A1,
but ν must also be in the nullspace of A2. Obviously, if A is a square matrix, then we get the
canonical definition of eigenvalue.

Four equivalent definitions of pseudospectra of square matrix were introduced by [1, 7, 8, 9].
Pseudospectra of rectangular matrix has been considered by Toh,Wright and Trefethen[6, 11, 12]
, Higham and Tisseur[2]. Here we present these equivalent definitions of pseudospectra as
follows[12],

Definition 1.1 Let A ∈ Cm×n and ε ≥ 0 be arbitrary. The ε−pseudospectrum Λε(A) of A is
the set of z ∈ C such that

‖(zĨ −A)†‖ ≥ ε−1, (1.2)

where ’†’ denotes the pseudoinverse and Ĩ denotes the m×n identity with 1 on the main diagonal
and 0 elsewhere, C denotes the complex plane.
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Definition 1.2 Λε(A) is the set of z ∈ C such that z ∈ Λ(A + E) for some E ∈ Cm×n with
‖E‖ ≤ ε.

Definition 1.3 Λε(A) is the set of z ∈ C such that ‖(zĨ − A)ν‖ ≤ ε for some ν ∈ Cn with
‖ν‖ = 1.

Definition 1.4 (assuming that the norm is ‖.‖2) Λε(A) is the set of z ∈ C such that

σmin(zĨ −A) ≤ ε, (1.3)

where σmin denotes the smallest singular value.

In section 2 we give a new definition of pseudospectra. In section 3 we consider some fun-
damental properties of this new definition.In section4 we present some numerical examples to
examine our conclusions. For simplicity, our norm ‖.‖ will always be the vector 2-norm.

2 A new definition of matrices pseudospectra

Let B = zĨ − A = [b1, b2, ..., bn]. It is shown that a system of vectors {b1, b2, ..., bn} is de-
pendence if and only if G[b1, b2, ..., bn] = 0, where G[b1, b2, ..., bn] is Gram determinant, i.e.,
G[b1, b2, ..., bn] ≡ det(B∗B). We can see that if z ∈ Λ(A) is an eigenvalue of A then we must
have det

1
2 (B∗B) = 0. Based on this consideration we give another definition of pseudospectra.

On the other hand , let A be an m× n matrix with m ≥ n, we write A as follows,

A = [a1, a2, ..., an]. (2.1)

A system of vectors {a1, a2, ..., ak}, 1 ≤ k ≤ n is ε−linear dependence, if G
1
2 [a1, a2, ..., ak] ≤ ε

for any given ε ≥ 0[3]. Obviously, if a system of vectors{a1, a2, ..., ak}is ε−linear dependence
then a system of vectors{a1, a2, ..., ar} with r > k is also ε−linear dependence. And we can have
the following result[4].

Suppose {b1, b2, ..., bk} is an orthogonal system and ‖bi‖ = ‖ai‖, i = 1, 2, ..., k then

G[a1, a2, ..., ar] ≤ G[b1, b2, ..., bk] (2.2)

. The equality is satisfied if and only if {a1, a2, ..., ak} is also an orthogonal system.

Based on this consideration we give a new definition of pseudospectra.

Definition 2.1 Let A ∈ Cm×n and ε ≥ 0 be arbitrary.The ε−pseudospectrum Λε(A) of A is the
set of z ∈ C such that

Λε(A) = {z ∈ C : G
1
2 (zĨ −A) = G

1
2 [b1, b2, ..., bn] ≤ ε} (2.3)

As we will show, Λε(A) depends continuously on A(for ε > 0) and is nonempty for sufficiently
large ε.
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3 Basic properties

Theorem 3.1 Let A be an m× n matrix,B = zĨ −A = QR.Then
(i) Λ(A) ⊆ Λε(A) ,where Λ(A) denotes the set of eigenvalues of A.
(ii) Λεα−1(A) = αΛε(A) for any α > 0.
(iii) Λε(A(:, 1 : k)) ⊆ Λε|ρk+1,k+1|(A(:, 1 : k + 1)), 1 ≤ k < n,
where the monotonicity result is expressed in ’MATLAB notation’,QR denotes QR decomposition
and ρkk is the main diagonal elements of matrix R.

Proof. (i) For any z ∈ Λ(A), we obtain that a system of vectors {b1, ..., bn} is linear dependence,
i.e.,G[b1, b2..., bn] = 0. which yields, z ∈ Λε(A).

(ii) This result follows immediately from the definition of Λε(A).

(iii)The idea is to factor the matrix B as B = zĨ −A = QR, where

R =

(
R̃
0

)
, R̃ =




ρ11

ρ22 ∗
. . .

ρnn




,

with |ρ11| ≥ |ρ22| ≥ · · · ≥ |ρnn|and Q is an m× n unitary matrix.
This is trivial for z ∈ Λ(A), since zĨ − A is singular. If z 6∈ Λ(A), i.e., rank(B) = n then
|ρnn| 6= 0. Consider that G[b1, b2, ..., bk] = det(B∗

kBk) = det(R̃∗
kR̃k) = ρ2

11.ρ
2
22...ρ

2
kk, where R̃k is

a k × k upper triangular matrix of R̃, Bk = [b1, b2, ..., bk].

This formula yields
G[b1, b2, ..., bk+1] = G[b1, b2, ..., bk]ρ2

k+1,k+1, (3.1)

which implies
Λε(A(:, 1 : k)) ⊆ Λερk+1,k+1

(A(:, 1 : k + 1)), (3.2)

If |ρk+1,k+1| ≤ 1 then we get Λε(A(:, 1 : k)) ⊆ Λε(A(:, 1 : k + 1)). ut
Theorem 3.2 (Pseudospectra of Similarity Transformation) Let m = n, S is an nonsingular
matrix and C = S−1AS. Then

Λε(A) = Λε(C). (3.3)

Proof. Let C = S−1AS = [c1, c2, ..., cn] then we have G[c1, ..., cn] = det(CT C) = det(AT A).
which implies

G[b1, b2, ..., bn] = G[c1, c2, ..., cn], (3.4)

i.e., Λε(A) = Λε(C) ut
The result demonstrates that pseudospectra are invariant under similarity transformation.

Consider Definition2.1, we know that Λε(A) ⊆ Λκ(S)ε(C).(κ(S) = ‖S‖‖S−1‖) The results follows
from the inequality ε−1 ≤ ‖(zĨ−A)−1‖ ≤ ‖S‖‖S−1‖‖(zĨ−C)−1‖. This means an ill-conditioned
similarity transformation can alter pseudospectra.
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Theorem 3.3 Suppose A is a normal matrix then
(i) Λε(A) = Λε(Λ), where Λ is a diagonal matrix with eigenvalues of A on the main diagonal.

(ii) for any z ∈ Λε(A), there exists λs ∈ λ(A)such that |z − λs| ≤ ε
1
n where λs is an eigenvalue

of A that minimum |z − λk| for 1 ≤ k ≤ n.

Proof. (i) This result follows from Theorem3.2.

(ii) Let

B = zĨ − Λ =




z − λ1

. . .
z − λn


 , (3.5)

then
det(BT B) = |z − λ1|2|z − λ2|2...|z − λn|2.

Hence we get

G
1
2 [b1, b2..., bn] = |z − λ1||z − λ2|...|z − λn| ≥ |z − λs|n. (3.6)

If z ∈ Λε(A) then we have |z − λs| ≤ ε
1
n . ut

Theorem 3.4 Let A,B are square matrices then Λε(AB) = Λε(BA).

Proof. Notice that Λ(AB) = Λ(BA). Then we have

det(λI −BA) = det(λI −AB).

Let C1 = λI −BA = [c1, ..., cn], C2 = λI −AB = [c′1, ..., c′n] then

G[c1, ..., cn] = det(CT
1 C1) = det(CT

2 C2) = G[c′1, ..., c
′
n], (3.7)

which yields Λε(AB) = Λε(BA). ut
The same proof shows that if A is an m × n matrix and B is an n × m matrix, then AB

and BA have the same psedoeigenvalues except that the product which is of higher order has
|m− n| extra zero eigenvalues.

The following theorem gives relationship between two definitions of pseudospectra.

Theorem 3.5 For any given ε ≥ 0 ,Λ(A) ⊆ Λε(A) ⊆ Λ
ε

1
n
(A).

Proof. From Theorem3.1 we have that

G
1
2 [b1, b2, ..., bn] = |ρ11||ρ22|...|ρnn|,

where ρnn is the element of matrix R̃,with |ρ11| ≥ |ρ22| ≥ · · · ≥ |ρnn|.
From the definition of the minimum singular value of a matrix B,

σmin(zĨ −A) = σmin(B) = min
‖x‖2=1

‖Bx‖2.

Since B = QR and the unitary invariance of the 2-norm, let x = en we have that

σmin(zĨ −A) ≤ |ρnn|.
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This formula implies

σn
min(B) ≤ |ρ11||ρ22|...|ρnn|,

i.e., Λε(A) ⊆ Λ
ε

1
n
(A). ut

Remark. Since the singular values and ρnn are continuous functions of the matrix entries, hence
if ρnn −→ 0 then σmin(B) −→ 0. The converse is also true. It also can be seen that Λε(A) and
Λε(A) change continuously with ε > 0.

4 Numerical experiments

Now let us calculate pseudospectra properly. The place to begin is with the column pivoting
QR decomposition. In numerical experiments,we observe that, if |ρkk| >> 1, k = 1, 2, ..., n then
G

1
2 [b1, b2, ..., bn] >> 1. In order to avoid this situation, we modify our formula G

1
2 [b1, b2, ..., bn] ≤

ε as G
1
2 [b1, b2, ..., bn]/|ρ11| ≤ ε/|ρ11| Hence, the algorithm is to compute column pivoting QR de-

composition of zĨ − A for values of z on a grid in the plane and then generate a contour plot
from this data. At last, we also notice that if G

1
2 [b1, b2, ..., bn] ≤ εn then we get σmin(B) ≤ ε,

but the converse may not be true (see Lawson and Hanson[5]p31).

Algorithm5.1
(1)For each z ∈ grid computing B = zĨ −A = [b1, ..., bn];
(2) Computing the column pivoting QR decomposition of B;
(3) If G

1
2 [b1, b2, ..., bn]/|ρ11| ≤ ε/|ρ11| then z ∈ Λε(A)

else goto step (1).

Now we present some numerical examples to examine our conclusions.

Example1 We denote the matrix A=rand(5,5),

A =




0.1934 0.6979 0.4966 0.6602 0.7271
0.6822 0.3784 0.8998 0.3420 0.3093
0.3028 0.8600 0.8216 0.2897 0.8385
0.5417 0.8537 0.6449 0.3412 0.5681
0.1509 0.5936 0.8180 0.5341 0.3704




.

Figure 1 shows the pseudospectra of A,which the eigenvalue drawn as dots. Note that the
sets are nested as indicated in Theorem3.1.In figure2, we see the 5× 4 matrix of A(:,1:4). The
inclusion properties of Theorem3.1(iii) can be clearly seen that the pseudospectra of the square
matrix A are bigger than those of A(:,1:4).
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Figure 1:ε−pseudospectra (ε = 0.5, 0.4, 0.3, 0.2, 0.1) for the matrix A. The grid points are
selected with v=80.
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Figure 2:ε−pseudospectra (ε = 0.5, 0.4, 0.3, 0.2, 0.1) for the matrix A(:,1:4). The grid points
are selected with v=80.

Example2 This test matrix is constructed by L.N.Trefethen (see[10]p255). Let A = AN=20 and
grid points are selected with v=80, the numerical result is shown in Figure 3.

6



−500 −400 −300 −200 −100 0 100 200 300 400 500
−500

−400

−300

−200

−100

0

100

200

300

400

500

fig.3

Figure 3 :ε−pseudospectra (ε = 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7) for the matrix A.
The grid points are selected with v=80.

5 Summary

We present a new definition of pseudospectra of matrices by using QR decomposition. Based
on this definition we get some basic properties. An algorithm for the computation of pseudospec-
tra is given.
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